Plasmon-coupled circular dichroism has emerged as a promising approach for ultrasensitive detection of biomolecular conformations through coupling between molecular chirality and surface plasmons. Chiral nanoparticle assemblies without chiral molecules present also have large optical activities. We apply single-particle circular differential scattering spectroscopy coupled with electron imaging and simulations to identify both structural chirality of plasmonic aggregates and plasmon-coupled circular dichroism induced by chiral proteins. We establish that both chiral aggregates and just a few proteins in interparticle gaps of achiral assemblies are responsible for the ensemble signal, but single nanoparticles do not contribute. We furthermore find that the protein plays two roles: It transfers chirality to both chiral and achiral plasmonic substrates, and it is also responsible for the chiral three-dimensional assembly of nanorods. Understanding these underlying factors paves the way toward sensing the chirality of single biomolecules.
Strong light-absorbing properties allow plasmonic metal nanoparticles to serve as antennas for other catalysts to function as photocatalysts. To achieve plasmonic photocatalysis, the hot charge carriers created when light is absorbed must be harnessed before they decay through internal relaxation pathways. We demonstrate the role of photogenerated hot holes in the oxidative dissolution of individual gold nanorods with millisecond time resolution while tuning charge-carrier density and photon energy using snapshot hyperspectral imaging. We show that light-induced hot charge carriers enhance the rate of gold oxidation and subsequent electrodissolution. Importantly, we distinguish how hot holes generated from interband transitions versus hot holes around the Fermi level contribute to photooxidative dissolution. The results provide new insights into hot-hole-driven processes with relevance to photocatalysis while emphasizing the need for statistical descriptions of nonequilibrium processes on innately heterogeneous nanoparticle supports.
Bimetallic nanocatalysts have the potential to surmount current limitations in industrial catalysis if their electronic and optical properties can be effectively controlled. However, improving the performance of bimetallic photocatalysts requires a functional understanding of how the intricacies of their morphology and composition dictate every element of their optical response. In this work, we examine Au and Pt-decorated Au nanorods on a single-particle level to ascertain how Pt influences the plasmon resonance of the bimetallic nanostructure. We correlated scattering, photoluminescence, and pure absorption of individual nanostructures separately to expose the impact of Pt on each component. We found that the scattering and absorption spectra of uncoated Au nanorods followed expected trends in peak intensity and shape and were accurately reproduced by finite difference time domain simulations. In contrast, the scattering and absorption spectra of single Pt-decorated Au nanorods exhibited red-shifted, broad features and large deviations in line shape from particle to particle. Simulations using an idealized geometry confirmed that Pt damps the plasmon resonance of individual Au nanorods and that spectral changes after Pt deposition were a consequence of coupling between Au and Pt in the hybrid nanostructure. Simulations also revealed that the Au nanorod acts as an antenna and enhances absorption in the Pt islands. Furthermore, comparing photoluminescence spectra from Au and Pt-decorated Au nanorods illustrated that emission was significantly reduced in the presence of Pt. The reduction in photoluminescence intensity indicates that Pt lowers the number of hot carriers in the Au nanorod available for radiative recombination through either direct production of hot carriers in Pt following enhanced absorption or charge transfer from Au to Pt. Overall, these results confirm that the Pt island morphology and distribution on the nanorod surface contribute to the optical response of individual hybrid nanostructures and that the damping observed in ensemble measurements originates not only from structural heterogeneity but also because of significant damping in single nanostructures.
Aluminum nanostructures are a promising alternative material to noble metal nanostructures for several photonic and catalytic applications, but their ultrafast electron dynamics remain elusive. Here, we combine singleparticle transient extinction spectroscopy and parameter-free first-principles calculations to investigate the non-equilibrium carrier dynamics in aluminum nanostructures. Unlike gold nanostructures, we find the sub-picosecond optical response of lithographically fabricated aluminum nanodisks to be more sensitive to the lattice temperature than the electron temperature. We assign the rise in the transient transmission to electron−phonon coupling with a pump-power-independent lifetime of 500 ± 100 fs and theoretically confirm this strong electron−phonon coupling behavior. We also measure electron−phonon lifetimes in chemically synthesized aluminum nanocrystals and find them to be even longer (1.0 ± 0.1 ps) than for the nanodisks. We also observe a rise and decay in the transient transmissions with amplitudes that scale with the surface-to-volume ratio of the aluminum nanodisks, implying a possible hot carrier trapping and detrapping at the native oxide shell−metal core interface.
The ability to control and manipulate temperature at nanoscale dimensions has the potential to impact applications including heat-assisted magnetic recording, photothermal therapies, and temperature-driven reactivity. One challenge with controlling temperature at nanometer dimensions is the need to mitigate heat diffusion, such that the temperature only changes in well-defined nanoscopic regions of the sample. Here we demonstrate the ability to use far-field laser excitation to actively shape the thermal near-field in individual gold nanorod heterodimers by resonantly pumping either the in-phase or out-of-phase hybridized dipole plasmon modes. Using single-particle photothermal heterodyne imaging, we demonstrate localization bias in the photothermal intensity due to preferential heating of one of the nanorods within the pair. Theoretical modeling and numerical simulation make explicit how the resulting photothermal images encode wavelength-dependent temperature biases between each nanorod within a heterodimer, demonstrating the ability to actively manage the thermal near-field by simply tuning the color of incident light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.