The importance of the blood flow feature on the hemorrhage of the cerebral aneurysm is confirmed by surgeons and scientists. In this paper, the effects of blood hemodynamics on the growth and rupture of the Internal Carotid Intracranial (ICA) are fully investigated. This study tries to demonstrate the blood feature inside the ICA at different time stages. Besides, the effect of coiling on blood characteristics is extensively studied in this research. Computational Fluid dynamic (CFD) is used for the analysis of the blood hemodynamics on the wall shear stress and pressure distribution within the aneurysm. Obtained results indicate that reducing the coiling porosity from 0.89 to 0.79 declines maximum WSS by about 26% and 61% for [Formula: see text] and 0.45, respectively, at the peak systolic stage. Our findings show that decreasing the porosity (or increasing coiling fraction) would decrease the maximum OSI by more than 55% in high blood viscosity of [Formula: see text].
This study proposes a simple correlation for approximating hydrogen solubility in biomaterials as a function of pressure and temperature. The pre-exponential term of the proposed model linearly relates to the pressure, whereas the exponential term is merely a function of temperature. The differential evolution (DE) optimization algorithm helps adjust three unknown coefficients of the correlation. The proposed model estimates 134 literature data points for the hydrogen solubility in biomaterials with an excellent absolute average relative deviation (AARD) of 3.02% and a coefficient of determination (R) of 0.99815. Comparing analysis justifies that the developed correlation has higher accuracy than the multilayer perceptron artificial neural network (MLP-ANN) with the same number of adjustable parameters. Comparing analysis justifies that the Arrhenius-type correlation not only needs lower computational effort, it also has higher accuracy than the PR (Peng-Robinson), PC-SAFT (perturbed-chain statistical associating fluid theory), and SRK (Soave-Redlich-Kwong) equations of state. Modeling results show that hydrogen solubility in the studied biomaterials increases with increasing temperature and pressure. Furthermore, furan and furfuryl alcohol show the maximum and minimum hydrogen absorption capacities, respectively. Such a correlation helps in understanding the biochemical–hydrogen phase equilibria which are necessary to design, optimize, and control biofuel production plants.
The efficient injection system has a great role on the overall enactment of air breathing propulsion systems at supersonic flow. In this work, the usage of extruded multi-injectors in the fuel distribution and mixing through the combustor is fully investigated. The usage of the extruded nozzles considerably intensifies the formation of the vortices nearby the injectors and this research has tried to visualize the role of these vortices on the diffusion of the fuel jet through the combustor of the scramjet. The influences of the jet space on the strength of produced circulations are fully discussed. The simulation of the high-speed air stream moving the combustion chamber with extruded nozzles is done via Computational Fluid dynamics. Based on our computational data, the use of extruded multi-jets enhances the penetration and diffusion of the hydrogen cross jet in supersonic airflow. Increasing the gap between injectors improves fuel mixing performance by up to 27% downstream of the jets, primarily by enhancing the lateral penetration of the fuel jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.