Abstract:Phase transformations during non-isothermal tempering of bainitic or martensitic microstructures obtained after quenching of a medium-carbon low-alloy steel was studied. The microstructures correspond to different locations of an as-quenched large-sized forged ingot used as a die material in the automotive industry. High-resolution dilatometry experiments were conducted to simulate the heat treatment process, as well as to investigate different phenomena occurring during non-isothermal tempering. The microstructures were characterized using optical and scanning electron microscopy. Dilatometry analyses demonstrated that tempering behavior varied significantly from bainitic to martensitic microstructures. Retained austenite, which exists between bainitic ferrite sheaves, decomposes to lower bainite causing a remarkable volume increase. It was found that this decomposition finishes below 386 • C. By contrast, martensite tempering was accompanied with a volume decrease due to the decomposition of medium-carbon martensite to low carbon martensite and carbides.
The aim of this study was to determine the effect of non-isothermal tempering on microstructure evolution in large-size slabs. Using high-resolution dilatometry, three different cooling rates (from 0.08 to 3°C/s) representative of different regions from the surface to the core of the slab were experimentally simulated, and then tempering was carried out for each starting microstructure. A combination of light and electron microscopy and X-ray diffraction analyses were employed to accurately analyze different phenomena occurring during the tempering process, specially, the identification of different microstructures (bainite, martensite and retained austenite), and the determination of the percentage of retained austenite for each experimental condition were considered. Experimental results revealed that the microstructure after the cooling rate of 0.08°C/s consisted of bainite and some retained austenite. For the cooling rate of 0.3°C/s, martensite plus bainite was detected, and when the cooling rate was increased to 3°C/s, a martensitic microstructure was obtained. Analysis of dilatometry curves indicated that tempering behavior varied significantly with the starting microstructure. Martensite tempering was accompanied with a length decrease due to the decomposition of medium-carbon martensite to low-carbon martensite plus carbides. Tempering of bainite and retained austenite resulted in a remarkable length increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.