In this paper, a new sliding window-based joint sparse representation (SWJSR) anomaly detector for hyperspectral data is proposed. The main contribution of this paper is to improve the judgments about the probability of anomaly presence in signals using the integration of information gathered during transition of sliding window for each pixel. In this method, each pixel experiences different spatial positions with respect to the spatial neighbors through the transition of this sliding window. In each position, an optimized local background dictionary is formed using a K-Singular Value Decomposition (K-SVD) algorithm and the recovery error of sparse estimation for each pixel is calculated using a simultaneous orthogonal matching pursuit algorithm (SOMP). Thus, the votes of each signal in terms of the anomaly presence in each spatial neighborhood are calculated and the variance of these recovery errors is considered as the detection criterion. The experimental results of the proposed SWJSR method on both synthetic and real datasets proved its higher performance compared to the Global RX (GRX), Local RX (LRX), Collaborative Representation Detector (CRD), Background Joint Sparse Representation (BJSR), Causal RX Detector (CR-RXD, CK-RXD), and Sliding Local RX(SLRX) detectors with an average efficiency improvement of about 7.5%, 14.25%,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.