The formation of excited compound nucleus (CN) and its statistical decay is investigated within the dinuclear system (DNS) model.The initial DNS is formed in the entrance channel when the projectile is captured by a target, and then the evolution of DNS in mass asymmetry coordinate leads to formation of the hot CN. The emission barriers for complex fragments were calculated within the DNS model by using the double folding procedure for the interaction potential. It is shown that cross sections for complex fragment emission become larger when excited CN is more neutron deficient. This approach gives also an opportunity to calculate the new neutron deficient isotopes production cross sections and can be applied to describe the hot fission of heavy systems.The model was tested by comparison of calculated results with experimental datas for the 3
Decay modes of excited nuclei are investigated in 78,82 Kr+ 40 Ca reactions at 5.5 MeV/nucleon. Charged products were measured by means of the 4π INDRA array. Kinetic-energy spectra and angular distributions of fragments with atomic number 3 Z 28 indicate a high degree of relaxation and are compatible with a fissionlike phenomenon. Persistence of structure effects is evidenced from elemental cross sections (σ Z ) as well as a strong odd-even staggering (o-e-s) of the light-fragment yields. The magnitude of the staggering does not significantly depend on the neutron content of the emitting system. Fragment-particle coincidences suggest that the light partners in very asymmetric fission are emitted either cold or at excitation energies below the particle emission thresholds. The evaporation residue cross section of the 78 Kr+ 40 Ca reaction is slightly higher than the one measured in the 82 Kr+ 40 Ca reaction. The fissionlike component is larger by ∼25% for the reaction having the lowest neutron-to-proton ratio. These experimental features are confronted to the predictions of theoretical models. The Hauser-Feshbach approach including the emission of fragments up to Z = 14 in their ground states as well as excited states does not account for the main features of σ Z . For both reactions, the transition-state formalism reasonably reproduces the Z distribution of the fragments with charge 12 Z 28. However, this model strongly overestimates the light-fragment cross sections and does not explain the o-e-s of the yields for 6 Z 10. The shape of the whole Z distribution and the o-e-s of the light-fragment yields are satisfactorily reproduced within the dinuclear system framework which treats the competition among evaporation, fusion-fission, and quasifission processes. The model suggests that heavy fragments come mainly from quasifission while light fragments are predominantly populated by fusion. An underestimation of the cross sections for 16 Z 22 could signal a mechanism in addition to the capture process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.