The problem of the helix-coil transition of biopolymers in explicit solvents, like water, with the ability for hydrogen bonding with solvent is addressed analytically using a suitably modified version of the Generalized Model of Polypeptide Chains. Besides the regular helix-coil transition, an additional coil-helix or reentrant transition is also found at lower temperatures. The reentrant transition arises due to competition between polymer-polymer and polymer-water hydrogen bonds.The balance between the two types of hydrogen bonding can be shifted to either direction through changes not only in temperature, but also by pressure, mechanical force, osmotic stress or other external influences. Both polypeptides and polynucleotides are considered within a unified formalism. Our approach provides an explanation of the experimental difficulty of observing the reentrant transition with pressure; and underscores the advantage of pulling experiments for studies of DNA.
The generalized model of polypeptide chains is extended to describe the helix-coil transition in a system comprised of two chains interacting side-by-side. The Hamiltonian of the model takes into account four possible types of interactions between repeated units of the two chains, i.e., helix-helix, helix-coil, coil-helix, and coil-coil. Analysis reveals when the energy I(hh)+I(cc) of (h-h, c-c) interactions overwhelms the energy I(hc)+I(ch) of mixed (h-c, c-h) interactions, the correlation length rises substantially, resulting in narrowing of the transition interval. In the opposite case, when I(hh)+I(cc)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.