A sample of 36 S-component sources observed by the radio telescope RATAN-600 was compared with calculations of gyromagnetic emission and bremsstrahlung based on recent sunspot models. The diagnostic possibilities of the spectral distributions in the radio flux, the degree of polarization, and the source sizes for the estimation of magnetic scale heights and other source parameters were checked by different methods.Depending on the magnetic field structure, the observations show different types of polarization spectra. Most regular spectra and highest values of the degree of polarization were observed from sources above the leading part of the associated spot group. Magnetic scale heights were found to be intrinsically associated with the source size of the gyromagnetic emission.The flare production rate of active regions appears to be related to their S-component flux and magnetic scale heights.
Model calculations of the S-component are compared with observations of the RATAN-600 telescope at five discrete microwave frequencies referring to active region McMath No. 15974 on May 1, 1979. The spectral variations of source diameter, flux density, and degree of polarization are used to derive the height scale of the magnetic field in accordance with a magnetic dipole distribution under the assumption of advanced temperature and electron density distributions according to most recent EUV observations.
We present a discussion of the gradual burst event on May 13, 1985 which is based on observations of the RATAN-600 telescope at ten fixed frequencies in the range between 37.5 and 0.95 GHz (0.8 and 31.6 cm wavelength) and on time profiles of patrol observations of the Observatory for Solar Radio Astronomy at Tremsdorf near Potsdam. This up to now most complete data set allows new conclusions on the extended spectral/spatial structure of the source region.There is strong evidence that only less than 24 % of the microwave flux from this event is emitted by an excessive small-scale burst source while the bulk of the burst emission comes from a larger region consisting of two major components covered by the source area of the S-component radiation. The different components of the burst and S-component radiation are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.