ABSTRACT:Recognition of paddy rice boundaries is an essential step for many agricultural processes such as yield estimation, cadastre and water management. In this study, an automatic rice paddy mapping is proposed. The algorithm is based on two temporal images: an initial period of flooding and after harvesting. The proposed method has several steps include: finding flooded pixels and masking unwanted pixels which contain water bodies, clouds, forests, and swamps. In order to achieve final paddy map, indexes such as Normalized Difference Vegetation Index (NDVI) and Land Surface Water Index (LSWI) are used. Validation is performed by rice paddy boundaries, which were drawn by an expert operator in Google maps. Due to this appraisal good agreement (close to 90%) is reached. The algorithm is applied to Gilan province located in the north part of Iran using Landsat 8 date 2013. Automatic Interface is designed based on proposed algorithm using Arc Engine and visual studio. In the Interface, inputs are Landsat bands of two time periods including: red (0.66 μm), blue (0.48 μm), NIR (0.87 μm), and SWIR (2.20 μm), which should be defined by user. The whole process will run automatically and the final result will provide paddy map of desire year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.