Many studies have investigated nutrient cycling in seasonally dry tropical forests, but few have assessed the contribution of different functional groups to these processes. Here, we investigated general litter dynamics patterns and the contribution of legume and non-legume trees to litter dynamics and carbon (C), nitrogen (N), and phosphorus (P) inputs in a fragment of secondary seasonally dry tropical forest after half a century of forest succession in the Atlantic Forest biome in Brazil. Between 2016 and 2017, we quantified litterfall production, canopy cover, forest floor, and soil C and N storage in 11 permanent plots distributed in the fragment. Vegetation identity and structure had been previously assessed. We quantified the seasonal inputs of leaf litter and C, N, and P separately for each functional group (legume and non-legume tree species). We also analyzed the correlations between the variables measured for each functional group with the variables measured at the plot level. Litter dynamics and nutrient input were affected by climate and functional group. Litterfall production during the two driest months was three times higher than during the other periods of the year, suggesting that species synchronicity is likely to minimize drought-related damage on trees. Legume trees had twice the basal area attained by non-legume trees, but while legumes were larger, non-legumes were more abundant and dominant in the smaller diameter class. Legumes deposited twice as much N during the driest period of the year as non-legumes. Although leaf litter, C, and P inputs by legumes were generally higher than those of non-legumes, these differences during the dry season were not statistically significant. We also found that the legume variables correlated better with the plot-level variables, compared to the non-legume functional group. Our results also indicated potential effects of the leaf litter and nutrient inputs by the legume functional group on the decomposition constant and, consequently, on the time of forest floor decomposition. Further studies should assess the role of different functional groups in litter dynamics and nutrient inputs in seasonally dry tropical forests.
The study was conducted in a portion of tropical montane forest in the Caparaó National Park, Brazil. The aim of this work was to assess the changes in seed bank composition, density and richness along an altitudinal gradient and across seasons, and to analyse the floristic links between the forest soil seed bank, seed rain, regeneration layer and adult tree layer. The seed bank data were collected in the dry and rainy seasons at seven different elevations, ranging from 1112 -1550 m above sea level. The floristic relationships were analysed through the species lists derived from previous studies at these same locations. The results showed seed density and species richness varied among different elevations, but did not vary with gradient. Seed bank density and richness varied significantly across seasons, with the highest averages found in the rainy season. In the floristic composition, the higher elevations showed more similar composition than to the lower elevations. Seed bank composition was floristically different from the seed rain, the regeneration layer and the adult tree layer of the forest. Our results showed that the soil seed bank was influenced by both altitude and environmental seasonality. The findings highlighted the importance soil seed bank as a mechanism of post-disturbance forest regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.