Passive noise control for a tandem NACA 65-710 airfoil configuration is experimentally investigated by applying leading-edge serrations on the rear airfoil. With a sliding side-plate mechanism that allows the rear airfoil to move in the vertical direction relative to the front airfoil, the position of maximum turbulence interaction noise is first identified from the far-field noise measurements. Subsequently, detailed static surface pressure distribution and unsteady surface pressure fluctuations are acquired to shed more light on the physical phenomenon and underlying noise-reduction mechanism of the leading-edge serrations. The far-field noise measurements confirm that a notable turbulence interaction noise reduction can be achieved from 600 Hz < f < 3000 Hz, agreeing well with the previous literature on the effectiveness of the leading-edge serrations. The near-field hydrodynamic analyses obtained using remote-sensing techniques of the fluctuating pressure fields over the airfoil show that a significant reduction in the surface pressure fluctuation levels up to 20 dB/Hz can be observed at the serrated-tip plane of the rear serrated airfoil close to the leading-edge regions, over the range of frequencies investigated. Although reduction can also be observed on the serrated-root plane, the magnitude is much less significant. The present results suggest that the modification of the unsteady loading on the rear airfoil by the leading-edge serrations plays a crucial role in the reduction of turbulence interaction noise in the tandem airfoil configuration, which may find practical application for noise reduction in aerodynamic systems involving rows of airfoils, such as contra-rotating open rotors and outlet guide vanes.
The growth of Tollmien-Schlichting (TS) waves is experimentally attenuated using a single-input and single-output (SISO) feedback system, where the TS wave packet is generated by a surface point source in a flat-plate boundary layer. The SISO system consists of a single wall-mounted hot wire as the sensor and a miniature speaker as the actuator. The actuation is achieved through a dual-slot geometry to minimise the cavity near-field effects on the sensor. The experimental setup to generate TS waves or wave packets is very similar to that used by Li and Gaster [1]. The aim is to investigate the performance of the SISO control system in attenuating single-frequency, two-dimensional disturbances generated by these configurations. The necessary plant models are obtained using system identification, the controllers are then designed based on the models and implemented in real-time to test their performance. Cancellation of the rms streamwise velocity fluctuation of TS waves is evident over a significant domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.