ABSTRACT:Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas. Therefore, to achieve a model which is able to simulate UHI growth, urban expansion should be concerned first. Considerable researches on urban expansion modeling have been done based on cellular automata. Accordingly the objective of this paper is to implement CA method for trend detection of Tehran UHI spatiotemporal growth based on urban sprawl parameters (such as Distance to nearest road, Digital Elevation Model (DEM), Slope and Aspect ratios). It should be mentioned that UHI growth modeling may have more complexities in comparison with urban expansion, since the amount of each pixel's temperature should be investigated instead of its state (urban and non-urban areas). The most challenging part of CA model is the definition of Transfer Rules. Here, two methods have used to find appropriate transfer Rules which are Artificial Neural Networks (ANN) and Support Vector Regression (SVR). The reason of choosing these approaches is that artificial neural networks and support vector regression have significant abilities to handle the complications of such a spatial analysis in comparison with other methods like Genetic or Swarm intelligence. In this paper, UHI change trend has discussed between 1984 and 2007. For this purpose, urban sprawl parameters in 1984 have calculated and added to the retrieved LST of this year. In order to achieve LST, Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) night-time images have exploited. The reason of implementing night-time images is that UHI phenomenon is more obvious during night hours. After that multilayer feed-forward neural networks and support vector regression have used separately to find the relationship between this data and the retrieved LST in 2007. Since the transfer rules might not be the same in different regions, the satellite image of the city has divided to several parts and for each part a specific CA model has defined. In the training step some pixels have randomly selected to calibrate the neural network and the regression. Then, using the trained neural network and support vector regression, LST in year 2007 has retrieved for all pixels. Results have indicated a great relationship between the simulated LST and the real one which has retrieved from thermal band of satellite image in 2007 (r = 0.843 for ANN method and r = 0.856 for SVR method). Although SVR caused to a better result, this method is much more time consuming than ANN method, especially when the number of training pixels increase.
ABSTRACT:Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.