Several alternative engineering models are available for the use in analysis of offshore wind turbines. However, it is not always clear which of the models will yield the most accurate or sufficiently conservative results. This paper investigates the effect of using two alternative soil-structure interaction models and two wind coherence models. The focus is on assessing how these modelling choices influence the predicted long-term fatigue damage in the support structure. The two soil models are a macro-element model and a p-y-curve model with Rayleigh damping. This gives differences in both the damping and stiffness properties of the turbine model. The differences between the two soil models tend to decrease as the turbine size increases. The wind coherence models considered are the Kaimal spectrum with exponential coherence and the Mann uniform shear turbulence model. The Kaimal model predicts the highest response at low frequencies, while the Mann model gives the highest response predictions at higher frequencies. Which turbulence model predicts the highest long-term fatigue damage is then determined by the natural frequencies, rotor and blade passing frequencies of the different turbines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.