The basic helix-loop-helix PAS (Per, Arnt, Sim) domain transcription factor gene NPAS3 is a replicated genetic risk factor for psychiatric disorders. A knockout (KO) mouse model exhibits behavioral and adult neurogenesis deficits consistent with human illness. To define the location and mechanism of NPAS3 etiopathology, we combined immunofluorescent, transcriptomic and metabonomic approaches. Intense Npas3 immunoreactivity was observed in the hippocampal subgranular zone-the site of adult neurogenesis-but was restricted to maturing, rather than proliferating, neuronal precursor cells. Microarray analysis of a HEK293 cell line over-expressing NPAS3 showed that transcriptional targets varied according to circadian rhythm context and C-terminal deletion. The most highly up-regulated NPAS3 target gene, VGF, encodes secretory peptides with established roles in neurogenesis, depression and schizophrenia. VGF was just one of many NPAS3 target genes also regulated by the SOX family of transcription factors, suggesting an overlap in neurodevelopmental function. The parallel repression of multiple glycolysis genes by NPAS3 reveals a second role in the regulation of glucose metabolism. Comparison of wild-type and Npas3 KO metabolite composition using high-resolution mass spectrometry confirmed these transcriptional findings. KO brain tissue contained significantly altered levels of NAD(+), glycolysis metabolites (such as dihydroxyacetone phosphate and fructose-1,6-bisphosphate), pentose phosphate pathway components and Kreb's cycle intermediates (succinate and α-ketoglutarate). The dual neurodevelopmental and metabolic aspects of NPAS3 activity described here increase our understanding of mental illness etiology, and may provide a mechanism for innate and medication-induced susceptibility to diabetes commonly reported in psychiatric patients
Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs. ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the de novo fatty acid synthesis pathway. ACC2 localizes on the outer membrane of mitochondria and produces malonyl-CoA to regulate the activity of carnitine palmitoyltransferase 1 (CPT1) that involves in the β-oxidation of fatty acid. Fatty acid synthesis is central in a myriad of physiological and pathological conditions. ACC1 is the major member of ACCs in mammalian, mountains of documents record the roles of ACC1 in various diseases, such as cancer, diabetes, obesity. Besides, acetyl-CoA and malonyl-CoA are cofactors in protein acetylation and malonylation, respectively, so that the manipulation of acetyl-CoA and malonyl-CoA by ACC1 can also markedly influence the profile of protein post-translational modifications, resulting in alternated biological processes in mammalian cells. In the review, we summarize our understandings of ACCs, including their structural features, regulatory mechanisms, and roles in diseases. ACC1 has emerged as a promising target for diseases treatment, so that the specific inhibitors of ACC1 for diseases treatment are also discussed.
Investigations into the biochemical processes and regulatory mechanisms of nitrogen (N) utilization can aid in understanding how N is used efficiently in plants. This report describes a deficiency in N utilization in an Arabidopsis (Arabidopsis thaliana) transfer DNA insertion mutant of the mitochondrial folylpolyglutamate synthetase gene DFC, which catalyzes the conjugation of glutamate residues to the tetrahydrofolate during folate synthesis. The mutant seedlings displayed several metabolic changes that are typical of plant responses to low-N stress, including increased levels of starch and anthocyanin synthesis as well as decreased levels of soluble protein and free amino acid, as compared with those in wild-type seedlings when external N was sufficient. More striking changes were observed when dfc seedlings were grown under N-limited conditions, including shorter primary roots, fewer lateral roots, higher levels of glycine and carbon-N ratios, and lower N content than those in wild-type seedlings. Gene expression studies in mutant seedlings revealed altered transcript levels of several genes involved in folate biosynthesis and N metabolism. The biochemical and metabolic changes also suggested that N assimilation is drastically perturbed due to a loss of DFC function. The observation that elevated CO 2 partly rescued the dfc phenotypes suggests that the alterations in N metabolism in dfc may be mainly due to a defect in photorespiration. These results indicate that DFC is required for N utilization in Arabidopsis and provide new insight into a potential interaction between folate and N metabolism. Nitrogen (N) is an essential macronutrient for plants and a major limiting factor for crop growth (Diaz et al., 2006). Investigations into the biochemical processes and regulatory mechanisms of N utilization can aid in understanding how N is used efficiently in plants. Low inorganic N results in numerous perturbations in plant metabolism, such as decreases in nitrate (NO 3 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.