<p>To avoid the risk brought by the financial crisis, the Improved Whale Optimization Algorithm-Back Propagation neural network (IWOA-BP) financial crisis early warning model is proposed. This paper selects the data from financial statements of some of the listed Chinese manufacturing companies from 2015-2019 as the research sample. First, the financial data of enterprises are screened by principal component analysis, and the early warning model is constructed from the financial and nonfinancial factors of six indicators: solvency, operating capacity, profitability, development capacity, cash flow and risk level factors. Second, the Whale Optimization Algorithm is optimized by the chaos strategy, as well as by the dynamic weight and sine cosine algorithm. Finally, the improved Whale Algorithm is optimized for BP neural network parameters. In the simulation experiments, the performance of the improved whale optimization algorithm is substantially improved. In addition, in the empirical analysis, compared to the prediction model with other algorithms, the prediction model of this paper has better results in terms of prediction accuracy.</p> <p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.