A transport model based on hole-density-dependent trapping is proposed to explain the two unusual conductivity peaks at surface hole densities above 10(13) cm(-2) in rubrene electric double layer transistors (EDLTs). Hole transport in rubrene is described to occur via multiple percolation pathways, where conduction is dominated by transport in the free-site channel at low hole density, and in the trap-site channel at larger hole density.
Although ionic liquids (ILs) have been used extensively in recent years as a high-capacitance "dielectric" in electric double layer transistors, the dynamics of the double layer formation have remained relatively unexplored. Better understanding of the dynamics and relaxation processes involved in electric double layer formation will guide device optimization, particularly with regard to switching speed. In this paper, we explore the dynamical characteristics of an IL in a metal/ionic liquid/metal (M/IL/M) capacitor. In particular, we examine a Au/IL/Au structure where the IL is 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. The experiments consist of frequency-dependent impedance measurements and time-dependent current vs voltage measurements for applied linear voltage ramps and abrupt voltage steps. The parameters of an equivalent circuit model are determined by fits to the impedance vs frequency data and subsequently verified by calculating the current vs voltage characteristics for the applied potential profiles. The data analysis indicates that the dynamics of the structure are characterized by a wide distribution of relaxation times spanning the range of less than microseconds to longer than seconds. Possible causes for these time scales are discussed.
We report room-temperature resistance changes of up to 30% under weak magnetic fields (0.1 T) for molecular tunnel junctions composed of oligophenylene thiol molecules, 1-2 nm in length, sandwiched between gold contacts. The magnetoresistance (MR) is independent of field orientation and the length of the molecule; it appears to be an interface effect. Theoretical analysis suggests that the source of the MR is a two-carrier (two-hole) interaction at the interface, resulting in spin coupling between the tunneling hole and a localized hole at the Au/molecule contact. Such coupling leads to significantly different singlet and triplet transmission barriers at the interface. Even weak magnetic fields impede spin relaxation processes and thus modify the ratio of holes tunneling via the singlet state versus the triplet state, which leads to the large MR. Overall, the experiments and analysis suggest significant opportunities to explore large MR effects in molecular tunnel junctions based on widely available molecules.
Electric double layer transistors (EDLTs) have unique impedance properties. As the transport of charge in the semiconductor and of ions in the electrolyte involve different time scales, the gate-to-channel equivalent capacitance changes dramatically with frequency. An important feature is the coupling between the capacitance and the channel conductance in the frequency range of interest due to the relatively large time constant of the charging process. This paper presents a systematic study of these EDLT properties. An equivalent-circuit model is proposed that provides reasonable physical explanations and shows good agreement with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.