Aberrant NLRP3 inflammasome activation contributes to the development of endotoxemia. The importance of negative regulation of NLRP3 inflammasomes remains poorly understood. Here, we show that the E3 ubiquitin ligase Cbl-b is essential for preventing endotoxemia induced by a sub-lethal dose of LPS via a caspase-11/NLRP3–dependent manner. Further studies show that NLRP3 undergoes both K63- and K48-linked polyubiquitination. Cbl-b binds to the K63-ubiquitin chains attached to the NLRP3 leucine-rich repeat domain (LRR) via its ubiquitin-associated region (UBA) and then targets NLRP3 at K496 for K48-linked ubiquitination and proteasome-mediated degradation. We also identify RNF125 as an additional E3 ubiquitin ligase that initiates K63-linked ubiquitination of the NLRP3 LRR domain. Therefore, NLRP3 is sequentially ubiquitinated by K63- and K48-linked ubiquitination, thus keeping the NLRP3 inflammasomes in check and restraining endotoxemia.
Background and aims Glutathione S -transferase A3 (GSTA3) is known as an antioxidative protease, however, the crucial role of GSTA3 in liver fibrosis remains unclear. As a recently we developed water-soluble pyridone agent with antifibrotic features, fluorofenidone (AKF-PD) can attenuate liver fibrosis, present studies were designed to explore the role of GSTA3 in liver fibrosis and its modulation by AKF-PD in vivo and in vitro. Methods Rats liver fibrosis models were induced by dimethylnitrosamine (DMN) or carbon tetrachloride (CCl4). The two activated hepatic stellate cells (HSCs) lines, rat CFSC-2G and human LX2 were treated with AKF-PD respectively. The lipid peroxidation byproduct malondialdehyde (MDA) in rat serum was determined by ELISA. The accumulation of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescein fluorescence analysis. The expression of α-smooth muscle actin (α-SMA), fibronectin (FN), and phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 beta (GSK-3β) were detected by western blotting (WB). Results GSTA3 was substantially reduced in the experimental fibrotic livers and transdifferentiated HSCs. AKF-PD alleviated rat hepatic fibrosis and potently inhibited HSCs activation correlated with restoring GSTA3. Moreover, GSTA3 overexpression prevented HSCs activation and fibrogenesis, while GSTA3 knockdown enhanced HSCs activation and fibrogenesis resulted from increasing accumulation of ROS and subsequent amplified MAPK signaling and GSK-3β phosphorylation. Conclusions We demonstrated firstly that GSTA3 inhibited HSCs activation and liver fibrosis through suppression of the MAPK and GSK-3β signaling pathways. GSTA3 may represent a promising target for potential therapeutic intervention in liver fibrotic diseases.
The aim of the present research was to study the therapeutic impacts of fluorofenidone (AKF-PD) on pig serum (PS)-induced liver fibrosis in rats and the complex molecular mechanisms of its effects on hepatic stellate cells (HSCs). Wistar rats were randomly divided into normal control, PS and PS/AKF-PD treatment groups. The activated human HSC LX-2 cell line was also treated with AKF-PD. The expression of collagen I and III, and α-smooth muscle actin (α-SMA) was determined by immunohistochemical staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blotting and/or RT-qPCR analyses were used to determine the expression of transforming growth factor (TGF)-β1, α-SMA, collagen I, mothers against decapentaplegic homolog (Smad)-3, extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK). AKF-PD attenuated the degree of hepatic fibrosis and liver injury in vivo , which was associated with the downregulation of collagen I and III, and α-SMA at the mRNA and protein levels. In vitro , AKF-PD treatment significantly reduced the TGF-β1-induced activation of HSCs, as determined by the reduction in collagen I and α-SMA protein expression. The TGF-β1-induced upregulation of the phosphorylation of Smad 3, ERK1/2, p38 and JNK was attenuated by AKF-PD treatment. These findings suggested that AKF-PD attenuated the progression of hepatic fibrosis by suppressing HSCs activation via the TGF-β1/Smad and MAPK signaling pathways, and therefore that AKF-PD may be suitable for use as a novel therapeutic agent against liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.