BackgroundLiuzijue training (LZJ) is a traditional exercise integrating breathing meditation and physical exercise, which could prevent and improve hypertension symptoms.PurposeWe aimed to evaluate the therapeutic effect of LZJ on hypertensive patients from the perspectives of blood pressure (BP), vascular endothelial function, immune homeostasis, and gut microbiota.MethodsWe conducted a randomized, controlled, single-blind experiment to assess the effect of 12 weeks LZJ in hypertensive patients. We measured the blood pressure level, vascular endothelial function, serum inflammatory factor concentration, and fecal microbial composition of hypertension patients.ResultsCompared with aerobic training, LZJ has a more significant effect on serum inflammatory factors (IL-6 and IL-10) and gut microbiota. PCoA analysis showed that LZJ tended to transform the gut microbiota structure of hypertensive subjects into that of healthy people. This process involves significant changes in Bacteroides, Clostridium_sensu_stricto_1, Escherichia-Shigella, Haemophilus, Megamonas, and Parabacteroides. In particular, Bacteroides and Escherichia-Shigella, these bacteria were closely related to the improvement of BP in hypertensive patients.ConclusionIn conclusion, our results confirm that LZJ could be used as an adjuvant treatment for hypertensive patients, which could effectively reduce BP, improve the immune homeostasis and gut microbiota structure in patients, and provide a theoretical reference for the use of LZJ in the clinic.Clinical trial registrationhttp://www.chictr.org.cn/listbycreater.aspx, identifier: ChiCTR2200066269.
Initially described as an ancient and highly conserved catabolic biofunction, autophagy plays a significant role in disease pathogenesis and progression. As the bioactive ingredient of Salvia miltiorrhiza, tanshinone has recently shown profound effects in alleviating and treating various diseases by regulating autophagy. However, compared to the remarkable achievements in the known pharmacological effects of this traditional Chinese medicine, there is a lack of a concise and comprehensive review deciphering the mechanism by which tanshinone regulates autophagy for medicinal research. In this context, we concisely review the advances of tanshinone in regulating autophagy for medicinal research, including human cancer, the nervous system, and cardiovascular diseases. The pharmacological effects of tanshinone targeting autophagy involve the regulation of autophagy-related proteins, such as Beclin-1, LC3-II, P62, ULK1, Bax, ATG3, ATG5, ATG7, ATG9, and ATG12; the regulation of the PI3K/Akt/mTOR, MEK/ERK/mTOR, Beclin-1-related, and AMPK-related signaling pathways; the accumulation of reactive oxygen species (ROS); and the activation of AMPK. Notably, we found that tanshinone played a dual role in human cancers in an autophagic manner, which may provide a new avenue for potential clinical application. In brief, these findings on autophagic tanshinone and its derivatives provide a new clue for expediting medicinal research related to tanshinone compounds and autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.