We study approximations of optimization problems with probabilistic constraints in which the original distribution of the underlying random vector is replaced with an empirical distribution obtained from a random sample. We show that such a sample approximation problem with a risk level larger than the required risk level will yield a lower bound to the true optimal value with probability approaching one exponentially fast. This leads to an a priori estimate of the sample size required to have high confidence that the sample approximation will yield a lower bound. We then provide conditions under which solving a sample approximation problem with a risk level smaller than the required risk level will yield feasible solutions to the original problem with high probability. Once again, we obtain a priori estimates on the sample size required to obtain high confidence that the sample approximation problem will yield a feasible solution to the original problem. Finally, we present numerical illustrations of how these results can be used to obtain feasible solutions and optimality bounds for optimization problems with probabilistic constraints.
This paper proposes a stochastic programming model and solution algorithm for solving supply chain network design problems of a realistic scale. Existing approaches for these problems are either restricted to deterministic environments or can only address a modest number of scenarios for the uncertain problem parameters. Our solution methodology integrates a recently proposed sampling strategy, the Sample Average Approximation scheme, with an accelerated Benders decomposition algorithm to quickly compute high quality solutions to large-scale stochastic supply chain design problems with a huge (potentially infinite) number of scenarios. A computational study involving two real supply chain networks are presented to highlight the significance of the stochastic model as well as the efficiency of the proposed solution strategy.
We study sample approximations of chance constrained problems. In particular, we consider the sample average approximation (SAA) approach and discuss the convergence properties of the resulting problem. We discuss how one can use the SAA method to obtain good candidate solutions for chance constrained * ( )Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ Brazil 22453-900, e-mail: bernardo@mat.puc-rio.br, research supported by CAPES and FUNENSEG.† Georgia Institute of Technology, Atlanta, Georgia 30332, USA, e-mail: sahmed@isye.gatech.edu, research of this author was partly supported by the NSF award DMI-0133943.‡ Georgia Institute of Technology, Atlanta, Georgia 30332, USA, e-mail: ashapiro@isye.gatech.edu, research of this author was partly supported by the NSF award DMI-0619977. 1 problems. Numerical experiments are performed to correctly tune the parameters involved in the SAA. In addition, we present a method for constructing statistical lower bounds for the optimal value of the considered problem and discuss how one should tune the underlying parameters. We apply the SAA to two chance constrained problems. The first is a linear portfolio selection problem with returns following a multivariate lognormal distribution. The second is a joint chance constrained version of a simple blending problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.