Solid solution hardening can be introduced in the zinc selenide by cationic substitution alloying. We are presenting our studies on gradual development of the hardening and the bond-length variations among the heavily Be-doped ternary alloys of Zn 1 Be Se. ese compositionally vivid ternary systems are grown by the Bridgman technique, and a set of careful measurements of synchrotron-based Zn core X-ray absorption spectroscopy are performed on the mixed alloy, which is followed by extraction of useful oscillations of extended X-ray absorption �ne structures. A detailed ab initio analysis is also carried out for the mixed alloy's theoretical EXAFS simulations, and suitable data processing codes are used for the subsequent experimental spectra �ttings. Various X-ray scattering single and multiple paths around the core atomic environ are simulated and compared with the spectroscopic results. With the aid of as-found parametric values, the hardening and crystalline disorders are discussed and explained in the midst of the multimodal bond-length behaviors and changes induced by the increased alloying amid as-found pseudocrystalline stabilities.
Beryllium doping has been used to harden the inherently soft zinc-selenides semiconductor mixed alloys. Stoichiometric semiconductor ternary alloys of BexZn 1−x Se have been synthesized by the Bridgeman technique. Extended X-ray absorption fine structure (EXAFS) spectroscopy -in a state-of-art synchrotron-based method -is performed by varying the dopant Be concentration of Be from 6% to 55% in the zinc-selenide host semiconductor. EXAFS analyses is carried out to study the next neighbor and next nearest neighbor atomic positions, nature of the substitutional doping, extent of bond length homogeneity, presence of involuntary contrast among the path distances, and the cross over from soft to hard character of the ternary on increasing Be concentration.Our results indicate the presence of an impulsive nature of hardening in the ternary with a disparity at the lower and the higher doping levels. The observation of impulsive hardening of the substitutional dopants in the semiconductor lattice is explained by the help of self-accommodative attributes of the host lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.