The recently emerged novel coronavirus, "severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)", caused a highly contagious disease called coronavirus disease 2019 (COVID-19). The virus was first reported from Wuhan city in China in December, 2019, which in less than three months spread throughout the globe and was declared a global pandemic by the World Health Organization (WHO) on 11th of March, 2020. So far, the ongoing pandemic severely damaged the world's most developed countries and is becoming a major threat for low-and middle-income countries. The poorest continent, Africa with the most vulnerable populations to infectious diseases, is predicted to be significantly affected by the ongoing COVID-19 outbreak. Therefore, in this review we collected and summarized the currently available literature on the epidemiology, etiology, vulnerability, preparedness and economic impact of COVID-19 in Africa, which could be useful and provide necessary information on ongoing COVID-19 pandemics in the continent. We also briefly summarized the concomitance of the COVID-19 pandemic and global warming.
summary A paradigm shift of candidiasis from Candida albicans to non‐albicans Candida species has fundamentally increased with the advent of C. auris. C. auris, despite being a newly emerged multidrug‐resistant fungal pathogen, is associated with severe invasive infections and outbreaks with high mortality rates. Initially reported from Japan in 2009, C. auris have now been found in different countries on all the continents except Antarctica. Due to its capability of nosocomial transmission and forming adherent biofilms on clinically important substrates, a high number of related hospital outbreaks have been reported worldwide. As C. auris is a multidrug‐resistant pathogen and is prone to misidentification by available conventional methods, it becomes difficult to detect and manage C. auris infection and also limits the therapeutic options against this deadly pathogen. The emergence of multidrug‐resistant C. auris advocates and amplifies the vigilance of early diagnosis and appropriate treatment of fungal infections. In this review, we discussed the nine‐year‐old history of C. auris—its trends in global emergence, epidemiological relatedness, isolation, mortality, associated risk factors, virulence factors, drug resistance and susceptibility testing, diagnostic challenges, microbiological characteristics, therapeutic options and infection prevention and control associated with this pathogen.
Metal based drugs are important class of chemotherapeutic agents that have the potential to circumvent drug resistance. Increasing drug resistance, treatment failures and limited treatment options necessitates the development of new therapeutic drugs with different mechanisms of action. Towards this direction, we synthesized a series of isatin based mixed ligand complexes of [Cu(dbm)LClH 2 O] (mlc1) , [Co(dbm)LCl 2 ] ‒ (mlc2) and [Ni(dbm)LClH 2 O] (mlc3) and evaluated their antifungal activity alone and in combination with fluconazole (FLC) against seven different Candida albicans isolates. The insight mechanism of antifungal action was revealed by studying apoptosis via terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. The study revealed that all these compounds showed antifungal activity at varying concentrations with mlc3 as the most potent compound with minimum inhibitory concentration ranging from 0.5–8 μg/mL and minimum fungicidal concentration ranging from 4–16 μg/mL. Upon combination with FLC, most of the interactions were either synergistic (54 %) or additive (32 %) with no antagonistic combination against any of the tested isolate. The study on their mechanism of action revealed that these compounds show apoptotic effect on C. albicans at sub-inhibitory concentrations, suggesting that strategies to target this process may augment the current antifungal treatment modalities.
Mixed ligand complexes containing a pendent indole showed significant proton pump ATPase targeted antifungal activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.