In the present era, food scientists are concerned about exploiting functional crops with nutraceutical properties. Buckwheat is one of the functional pseudocereals with nutraceutical components used in the treatment of health‐related diseases, malnutrition, and celiac diseases. As a preferred diet as a gluten‐free product for celiac diseases, buckwheat is a good source of nutrients, bioactive components, phytochemicals, and antioxidants. The general characteristics and better nutritional profile of buckwheat than other cereal family crops were highlighted by previous investigations. In buckwheats, bioactive components like peptides, flavonoids, phenolic acids,
d
‐fagomine, fagopyritols, and fagopyrins are posing significant health benefits. This study highlights the current knowledge about buckwheat and its characteristics, nutritional constituents, bioactive components, and their potential for developing gluten‐free products to target celiac people (1.4% of the world population) and other health‐related diseases.
(1) Background: Inflammation is one of the primary responses of the immune system and plays a key role in the pathophysiology of various diseases. Recent reports suggest that various phytochemicals exhibit promising anti-inflammatory and immunomodulation activities with relatively few undesirable effects, thus offering a viable option to deal with inflammation and associated diseases. The current study evaluates the anti-inflammatory and immunomodulatory effects of withaferin A (WA) in immune cells extracted from BALB/c mice. (2) Methods: MTT assays were performed to assess the cell viability of splenocytes and anti-inflammatory doses of WA. Under aseptic conditions, the isolation of macrophages and splenocytes from BALB/c mice was performed to investigate the anti-inflammatory effects of WA. Analysis of the expression of proinflammatory cytokines and associated signaling mediators was performed using proinflammatory assay kits, real-time polymerase chain reaction (RT-PCR), and immunoblotting, while the quantification of B and T cells was performed by flow cytometry. (3) Results: Our results demonstrated that WA exhibits anti-inflammatory and immunomodulatory effects in LPS-stimulated macrophages and splenocytes derived from BALB/c mice, respectively. Mechanistically, we found that WA promotes an anti-inflammatory effect on LPS-stimulated macrophages by attenuating the secretion and expression of proinflammatory cytokines TNF-α, IL-1β, IL-6, and the inflammation modulator NO, both at the transcriptional and translational level, respectively. Further, WA inhibits LPS-stimulated inflammatory signaling by dephosphorylation of p-Akt-Ser473 and p-ERK1/2. This dephosphorylation does not allow IĸB-kinase activation to disrupt IĸB–NF-ĸB interaction. The consistent interaction of IĸB with NF-ĸB in WA-treated cells attenuates the activation of downstream inflammatory signaling mediators Cox-2 and iNOS expression, which play crucial roles in inflammatory signaling. Additionally, we observed significant immunomodulation of LPS-stimulated spleen-derived lymphocytes by suppression of B (CD19) and T (CD4+/CD8+) cell populations after treatment with WA. (4) Conclusion: WA exhibits anti-inflammatory and immunomodulatory activity by modulating Akt/ERK/NF-kB-mediated inflammatory signaling in macrophages and immunosuppression of B (CD19) and T cell (CD4+/CD8+) populations in splenocytes after LPS stimulation. These results suggest that WA could act as a potential anti-inflammatory/immunomodulatory molecule and support its use in the field of immunopharmacology to modulate immune system cells.
Essential factor influencing the growth of plants is quality and type of light, development, and accumulation of phytochemicals, especially those grown in controlled conditions. Light is essential source for photosynthesis in higher plants, whereas light signalling is important in plant morphogenesis. The development of LED technologies enables for the optimization of photosynthetic processes and the regulation of plant physiology through the manipulation of light parameters. The plant morphology and functioning are influenced by the LED light quality, duration, and intensity producing responses at biochemical, physiological, and anatomical levels. LEDs also improve the nutritional profile of fruits and vegetables by inducing resistance to abiotic and biotic stress, as well as their effect on bioactive compounds, physiological properties, and ripening process. This paper reviews the role of LEDs in pre-harvest and post-harvest storage of fresh produce, including the effects on physiological characteristics, secondary metabolites, nutritional properties, ripening process, resistance to biotic and abiotic stress, and post-harvest disease occurrence. This review also focuses on the role of LEDs and the impact of their various bandwidths on the preservation of horticultural produce pre-and post-harvest. LED treatment can enhance several phytochemicals such as phenolic compounds, carotenoids, and vitamins. It has a significant impact on antioxidant capacity and anthocyanin content. LED was seen to be an efficient lighting source for delaying or accelerating ripening of fruits, and as well as delaying senescence. Therefore, LED lighting is an promising technology for enhancing the shelf life of vegetables by increasing disease resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.