The spread of COVID-19 has been taken on pandemic magnitudes and has already spread over 200 countries in a few months. In this time of emergency of COVID-19, especially when there is still a need to follow the precautions and developed vaccines are not available to all the developing countries in the first phase of vaccine distribution, the virus is spreading rapidly through direct and indirect contacts. The World Health Organization (WHO) provides the standard recommendations on preventing the spread of COVID-19 and the importance of face masks for protection from the virus. The excessive use of manual disinfection systems has also become a source of infection. That is why this research aims to design and develop a low-cost, rapid, scalable, and effective virus spread control and screening system to minimize the chances and risk of spread of COVID-19. We proposed an IoT-based Smart Screening and Disinfection Walkthrough Gate (SSDWG) for all public places entrance. The SSDWG is designed to do rapid screening, including temperature measuring using a contact-free sensor and storing the record of the suspected individual for further control and monitoring. Our proposed IoT-based screening system also implemented real-time deep learning models for face mask detection and classification. This module classified individuals who wear the face mask properly, improperly, and without a face mask using VGG-16, MobileNetV2, Inception v3, ResNet-50, and CNN using a transfer learning approach. We achieved the highest accuracy of 99.81% while using VGG-16 and the second highest accuracy of 99.6% using MobileNetV2 in the mask detection and classification module. We also implemented classification to classify the types of face masks worn by the individuals, either N-95 or surgical masks. We also compared the results of our proposed system with state-of-the-art methods, and we highly suggested that our system could be used to prevent the spread of local transmission and reduce the chances of human carriers of COVID-19.
In supervised machine learning, specifically in classification tasks, selecting and analyzing the feature vector to achieve better results is one of the most important tasks. Traditional methods such as comparing the features’ cosine similarity and exploring the datasets manually to check which feature vector is suitable is relatively time consuming. Many classification tasks failed to achieve better classification results because of poor feature vector selection and sparseness of data. In this paper, we proposed a novel framework, topic2features (T2F), to deal with short and sparse data using the topic distributions of hidden topics gathered from dataset and converting into feature vectors to build supervised classifier. For this we leveraged the unsupervised topic modelling LDA (latent dirichlet allocation) approach to retrieve the topic distributions employed in supervised learning algorithms. We made use of labelled data and topic distributions of hidden topics that were generated from that data. We explored how the representation based on topics affect the classification performance by applying supervised classification algorithms. Additionally, we did careful evaluation on two types of datasets and compared them with baseline approaches without topic distributions and other comparable methods. The results show that our framework performs significantly better in terms of classification performance compared to the baseline(without T2F) approaches and also yields improvement in terms of F1 score compared to other compared approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.