In a Josephson phase qubit the coherent manipulations of the computational states are achieved by modulating an applied ac current, typically in the microwave range. In this work we show that it is possible to find optimal modulations of the bias current to achieve high-fidelity gates. We apply quantum optimal control theory to determine the form of the pulses and study in details the case of a NOT-gate. To test the efficiency of the optimized pulses in an experimental setup, we also address the effect of possible imperfections in the pulses shapes, the role of off-resonance elements in the Hamiltonian, and the effect of capacitive interaction with a second qubit.Comment: 10 pages, 13 figure
We consider a two-dimensional homogeneous ensemble of cold bosonic atoms loaded inside two optical cavities and pumped by a far-detuned external laser field. We examine the conditions for these atoms to self-organize into triangular and honeycomb lattices as a result of superradiance. By collectively scattering the pump photons, the atoms feed the initially empty cavity modes. As a result, the superposition of the pump and cavity fields creates a space-periodic light-shift external potential and atoms self-organize into the potential wells of this optical lattice. Depending on the phase of the cavity fields with respect to the pump laser, these minima can either form a triangular or a hexagonal lattice. By numerically solving the dynamical equations of the coupled atom-cavity system, we have shown that the two stable atomic structures at long times are the triangular lattice and the honeycomb lattice with equally-populated sites. We have also studied how to drive atoms from one lattice structure to another by dynamically changing the phase of the cavity fields with respect to the pump laser.
We investigate the synthesis of a hyperfine spin lattice in an atomic Bose-Einstein condensate, with two hyperfine spin components, inside a onedimensional high-finesse optical cavity, using off-resonant superradiant Raman scattering. Spatio-temporal evolution of the relative population of the hyperfine spin modes is examined numerically by solving the coupled cavity-condensate mean-field equations in the dispersive regime. We find, analytically and numerically, that beyond a certain threshold of the transverse laser pump, Raman superradiance and self-organization of the hyperfine spin components occur simultaneously and as a result a magnetic lattice is formed. The effects of an extra laser pump parallel to the cavity axis and the time dependence of the pump strength on the synthesis of a sharper lattice are also addressed.
In adiabatic Cooper pair pumps, operated by means of gate voltage modulation only, the quantization of the pumped charge during a cycle is limited due to the quantum coherence of the macroscopic superconducting wave function. In this work we show that it is possible to obtain very accurate pumps in the non-adiabatic regime by a suitable choice of the shape of the gate voltage pulses. We determine the shape of these pulses by applying quantum optimal control theory to this problem. In the optimal case the error, with respect to the quantized value, can be as small as of the order of 10 −6 e: the error is reduced by up to five orders of magnitude with respect to the adiabatic pumping. In order to test the experimental feasibility of this approach we consider the effect of charge noise and the deformations of the optimal pulse shapes on the accuracy of the pump. Charge noise is assumed to be induced by random background charges in the substrate, responsible for the observed 1/f noise. Inaccuracies in the pulse shaping are described by assuming a finite bandwidth for the pulse generator. In realistic cases the error increases at most of one order of magnitude as compared to the optimal case. Our results are promising for the realization of accurate and fast superconducting pumps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.