Candida albicans, the dimorphic opportunistic human fungal pathogen, is capable of forming highly drug-resistant biofilms in the human host. Formation of biofilm is a multistep and multiregulatory process involving various adaptive mechanisms. The ability of cells in a biofilm to alter membrane lipid composition is one such adaptation crucial for biofilm development in C. albicans. Lipids modulate mixed species biofilm formation in vivo and inherent antifungal resistance associated with these organized communities. Cells in C. albicans biofilms display phase-dependent changes in phospholipid classes and in levels of lipid raft formation. Systematic studies with genetically modified strains in which the membrane phospholipid composition can be manipulated are limited in C. albicans. In this review, we summarize the knowledge accumulated on the impact that alterations in phospholipids may have on the biofilm forming ability of C. albicans in the human host. This review may provide the requisite impetus to analyze lipids from a therapeutic standpoint in managing C. albicans biofilms.
The unfolded protein response (UPR), crucial for the maintenance of endoplasmic reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in pathogenic fungi. Here, we show that Candida albicans relies on an ER‐resident protein, inositol‐requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR. Compromised Ire1 function impacts cellular processes that are dependent on functional secretory homeostasis, as inferred from transcriptional profiling. Concordantly, an Ire1‐mutant strain exhibits pleiotropic roles in ER stress response, antifungal tolerance, cell wall regulation and virulence‐related traits. Hac1 is the downstream target of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from HAC1 mRNA during tunicamycin‐induced ER stress. Ire1 also activates the UPR in response to perturbations in cell wall integrity and cell membrane homeostasis in a manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the Ire1‐mutant strain is severely defective in hyphal morphogenesis and biofilm formation as well as in establishing a successful infection in vivo. Together, these findings demonstrate that C. albicans Ire1 functions to regulate traits that are essential for virulence and suggest its importance in responding to multiple stresses, thus integrating various stress signals to maintain ER homeostasis.
Fungal pathogens like Candida albicans exhibit several survival mechanisms to evade attack by antifungals and colonize host tissues. Rta3, a member of the Rta1-like family of lipid-translocating exporters has a 7-transmembrane domain (7TMD) topology, similar to the G-protein-coupled receptors (GPCR) and is unique to the fungal kingdom. Our findings point towards a role for the plasma membrane localized Rta3 in providing tolerance to miltefosine, an analog of alkylphosphocholine, by maintaining mitochondrial energetics. Concurrent with miltefosine susceptibility, the rta3Δ/Δ strain displays increased inward translocation (flip) of fluorophore-labelled phosphatidylcholine (PC) across the plasma membrane attributed to enhanced PC-specific flippase activity. We also assign a novel role to Rta3 in the Bcr1-regulated pathway for in vivo biofilm development. Transcriptome analysis reveals that Rta3 regulates expression of Bcr1 target genes involved in cell surface properties, adhesion, and hyphal growth. We show that rta3Δ/Δ mutant is biofilm-defective in a rat venous catheter model of infection and that BCR1 overexpression rescues this defect, indicating that Bcr1 functions downstream of Rta3 to mediate biofilm formation in C. albicans. The identification of this novel Rta3-dependent regulatory network that governs biofilm formation and PC asymmetry across the plasma membrane will provide important insights into C. albicans pathogenesis.
In this study, we demonstrate a novel function of a downstream effector molecule of the calcineurin pathway, RTA2 (Resistance To Aminocholesterol), in ER stress response. The deletion of RTA2 increases susceptibility to the ER stressor tunicamycin and morpholine-like drug, 7-aminocholesterol. Additionally, the expression of RTA2 is also transcriptionally induced by ergosterol biosynthesis inhibitors and cell-wall-damaging agents. As tunicamycin induces the unfolded protein response pathway (UPR) via the transcription factor, HAC1, we monitored the expression of a subset of HAC1-dependent UPR target genes in rta2Δ/Δ cells. Upon tunicamycin exposure, rta2Δ/Δ cells displayed a significantly reduced expression of UPR genes, in spite of only a moderate decrease in the HAC1 spliced mRNA levels and no change in Hac1 protein levels. Furthermore, hac1Δ/Δrta2Δ/Δ cells display an exacerbated sensitivity to tunicamycin compared to the single mutants. We propose that functional RTA2 is requisite for the regulation of Hac1p-dependent UPR target genes to maximal levels, thereby assisting survival during ER stress. Collectively, this study proposes, for the first time, existence of an interplay between the Hac1p- and calcineurin- controlled networks via a downstream effector molecule of the latter, RTA2, to facilitate survival during ER stress in Candida albicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.