Cucurbita genus has received a renowned interest in the last years. This plant species, native to the Americas, has served worldwide folk medicine for treating gastrointestinal diseases and intestinal parasites, among other clinical conditions. These pharmacological effects have been increasingly correlated with their nutritional and phytochemical composition. Among those chemical constituents, carotenoids, tocopherols, phenols, terpenoids, saponins, sterols, fatty acids, and functional carbohydrates and polysaccharides are those occurring in higher abundance. However, more recently, a huge interest in a class of triterpenoids, cucurbitacins, has been stated, given its renowned biological attributes. In this sense, the present review aims to provide a detailed overview to the folk medicinal uses of Cucurbita plants, and even an in-depth insight on the latest advances with regards to its antimicrobial, antioxidant and anticancer effects. A special emphasis was also given to its clinical effectiveness in humans, specifically in blood glucose levels control in diabetic patients and pharmacotherapeutic effects in low urinary tract diseases.
BackgroundTraditional knowledge of indigenous plants is pivotal in developing strategies to feed livestock sustainably in low input systems. Likewise, in Pakistan the indigenous people of Central Punjab have been using their regional grasses as a ruminant fodder for centuries. This study evaluated the indigenous traditional knowledge to ascertain the value of various fodder grasses to optimise their use to feed livestock in Central Punjab.MethodsThe snowball technique was employed to identify key informants who had relevant knowledge about different grasses in the study area. Semi-structured questionnaires, face-to-face interviews and site visits were used for describing the fodder grasses. The data were then analysed by using relative frequency citation and pairwise comparison methods to determine the order of priority among the listed fodder grasses. Furthermore, SPSS 22 software was used for descriptive statistics and interpretation of associations among studied parameters. Microsoft Excel was used to present data as % values and graphs.ResultsOverall, 53 grasses were described with ethnobotanical information regarding their uses for fodder, ethnoveterinary and other purposes. All these grasses belonged to the family Poaceae where the subfamily Panicoideae had the maximum number of 30 grasses. We categorized these grasses into high (A), medium (B) and low priority (C) groups where the group A grasses were reported as not only the most abundant but also the most palatable forages to all ruminants. Their higher demand was reflected by the feeding systems of both ad libitum grazing and feeding after cutting and mixing with other feeds. The study also revealed 37 previously unreported ethnoveterinary uses of these grasses.ConclusionsThe results have reinforced the value of conserving ethnobotanical knowledge, being poorly documented previously, in developing strategies to feed livestock. It indicated the preferred fodder grasses as well as the possible reasons of their preference. The reported data need to be validated for nutritional and health benefits. This information could help the smallholder farmers in association with regional governments to propagate suitable fodder grasses for their use in sustainable livestock feeding to produce safe and healthy food for indigenous communities.
Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer’s disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.
The genus Cinnamomum includes a number of plant species largely used as food, food additives and spices for a long time. Different traditional healing systems have used these plants as herbal remedies to cure diverse ailments. The aim of this comprehensive and updated review is to summarize the biodiversity of the genus Cinnamomum, its bioactive compounds, the mechanisms that underlie the pharmacological activities and molecular targets and toxicological safety. All the data in this review have been collected from databases and recent scientific literature including Web of Science, PubMed, ScienceDirect etc. The results showed that the bioactive compounds of Cinnamomum species possess antimicrobial, antidiabetic, antioxidant, anti-inflammatory, anticancer and neuroprotective effects. The preclinical (in vitro/in vivo) studies provided the possible molecular mechanisms of these action. As a novelty, recent clinical studies and toxicological data described in this paper support and confirm the pharmacological importance of the genus Cinnamomum. In conclusion, the obtained results from preclinical studies and clinical trials, as well as reduced side effects provide insights into future research of new drugs based on extracts and bioactive compounds from Cinnamomum plants.
The Glycyrrhiza genus, generally well-known as licorice, is broadly used for food and medicinal purposes around the globe. The genus encompasses a rich pool of bioactive molecules including triterpene saponins (e.g., glycyrrhizin) and flavonoids (e.g., liquiritigenin, liquiritin). This genus is being increasingly exploited for its biological effects such as antioxidant, antibacterial, antifungal, anti-inflammatory, antiproliferative, and cytotoxic activities. The species Glycyrrhiza glabra L. and the compound glycyrrhizin (glycyrrhizic acid) have been studied immensely for their effect on humans. The efficacy of the compound has been reported to be significantly higher on viral hepatitis and immune deficiency syndrome. This review provides up-to-date data on the most widely investigated Glycyrrhiza species for food and medicinal purposes, with special emphasis on secondary metabolites’ composition and bioactive effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.