In today’s scenario, sepsis is impacting millions of patients in the intensive care unit due to the fact that the mortality rate is increased exponentially and has become a major challenge in the field of healthcare. Such peoples require determinant care which increases the cost of the treatment by using a large number of resources because of the nonavailability of the resources. The treatment of sepsis is available in the early state, but treatment is not started at the right time, and then it converts to the advanced level of sepsis and increases the fatalities. Thus, an intensive analysis is required to detect and identify sepsis at the early stage. There are some models available that work based on the manual score and based on only the biomark features, but these are not fully automated. Some machine learning-based models are also available, which can reduce the mortality rate, but accuracy is not up to date. This paper proposes a machine learning model for early detecting and predicting sepsis in intensive care unit patients. Various models, random forest (RF), linear regression (LR), support vector machine (SVM), naive Bayes (NB), ensemble (of SVM, RF, NB, and LR), XGBoost, and proposed ensemble (of SVM, RF, NB, LR, and XGBoost), are simulated by using the collected data from intensive care unit patient’s database that is based on the clinical laboratory values and vital signs. The performance of the models is evaluated by considering the same datasets. The balanced accuracy of RF, LR, SVM, NB, ensemble (of SVM, RF, NB, and LR), XGBoost, and proposed ensemble (of SVM, RF, NB, LR, and XGBoost) is 0.90, 0.73, 0.93, 0.74, 0.94, 0.95, and 0.96, respectively. It is also evident from the experimental results that the proposed ensemble model performs well as compared to the other models.
In today’s real-world, estimation of the level of difficulty of the musical is part of very meaningful musical learning. A musical learner cannot learn without a defined precise estimation. This problem is not very basic but it is complicated up to some extent because of the subjectivity of the contents and the scarcity of the data. In this paper, a lightweight model that generates original music content using deep learning along with generating music based on a specific genre is proposed. The paper discusses a lightweight deep learning-based approach for jazz music generation in MIDI format. In this work, the genre of music chosen is Jazz, and the songs selected are classical numbers composed by various artists. All the songs are in MIDI format and there might be differences in the pace or tone of the music. It is prudential to make sure that the chosen datasets that do not have these kinds of differences and are similar to the final output as desired. A model is trained to take in a part of a music file as input and should produce its continuation. The result generated should be similar to the dataset given as the input. Moreover, the proposed model also generates music using a particular instrument.
In today’s environment, electronics technology is growing rapidly because of the availability of the numerous and latest devices which can be deployed for monitoring and controlling the various healthcare systems. Due to the limitations of such devices, there is a dire need to optimize the utilization of the devices. In healthcare systems, Internet of things (IoT) based biosensors networking has minimal energy during transmission and collecting data. This paper proposes an optimized artificial intelligence system using IoT biosensors networking for healthcare problems for efficient data collection from the deployed sensor nodes. Here, an optimized tunicate swarm algorithm is used for optimizing the route for data collection and transmission among the patient and doctor. The fitness function of the optimized tunicate swarm algorithm used the distance, proximity, residual, and average energy of nodes parameters. The proposed method is attributed to the optimal CH chosen under TSA operation having a lower energy consumption. The performance of the proposed method is compared to the existing methods in terms of various metrics like stability period, lifetime, throughput, and clusters per round.
Nowadays, the Internet of things- (IoT-) based emerging technologies are playing a very pervasive role in healthcare systems where information is required on a real-time basis. These systems may provide real-time alerts with continuous monitoring to the concern in the odd conditions. Thus, these systems help the elderly and ill person with a good quality life and reduce the number of caregiver persons. Based on the above facts, this paper proposes a secure, efficient, and stable humanoid healthcare information processing and supervisory method with an IoT-based sensor network. Here, five different parameters specifically network residual energy, node density, node average energy, number of neighbors surrounded of a node, and distance between the sensor node and sink are considered for effective utilization of the energy of the sensor nodes. This method also reduces the communication distance of the nodes which helps in proficient data collection from the human body. The performance of the proposed and the existing work is considered the stability period, number of alive and dead nodes, total energy consumption, number of packets send to cluster heads, and base station metrics with two different monitoring areas. Thus, the stability period of the proposed method is increased by 144.52% with respect to the existing method protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.