Research on the topic of social media for teaching and learning in the higher education have received much attention from academia and practitioners. Social media technology was acknowledged not only as an important communication tool between faculty members and students but also shows great potential as the next social learning platform that better serves the teaching, learning and administration of a higher education institute. Its informal setting allows more flexibility for both students and faculty members to teach and learn anywhere and everywhere. Despite its important, little is known about how this research topic is evolving within the literature. Hence, using a bibliometric analysis technique this study examines the trends, topics, and challenges addressed by previous research for the past ten years (2008-2018). The paper ends by discussing future research directions related to this topic.
The Internet of Things (IoT) has the potential to revolutionize agriculture by providing real-time data on crop and livestock conditions. This study aims to evaluate the performance scalability of wireless sensor networks (WSNs) in agriculture, specifically in two scenarios: monitoring olive tree farms and stables for horse training. The study proposes a new classification approach of IoT in agriculture based on several factors and introduces performance assessment metrics for stationary and mobile scenarios in 6LowPAN networks. The study utilizes COOJA, a realistic WSN simulator, to model and simulate the performance of the 6LowPAN and Routing protocol for low-power and lossy networks (RPL) in the two farming scenarios. The simulation settings for both fixed and mobile nodes are shared, with the main difference being node mobility. The study characterizes different aspects of the performance requirements in the two farming scenarios by comparing the average power consumption, radio duty cycle, and sensor network graph connectivity degrees. A new approach is proposed to model and simulate moving animals within the COOJA simulator, adopting the random waypoint model (RWP) to represent horse movements. The results show the advantages of using the RPL protocol for routing in mobile and fixed sensor networks, which supports dynamic topologies and improves the overall network performance. The proposed framework is experimentally validated and tested through simulation, demonstrating the suitability of the proposed framework for both fixed and mobile scenarios, providing efficient communication performance and low latency. The results have several practical implications for precision agriculture by providing an efficient monitoring and management solution for agricultural and livestock farms. Overall, this study provides a comprehensive evaluation of the performance scalability of WSNs in the agriculture sector, offering a new classification approach and performance assessment metrics for stationary and mobile scenarios in 6LowPAN networks. The results demonstrate the suitability of the proposed framework for precision agriculture, providing efficient communication performance and low latency.
The explosive increase in educational data and information systems has led to new teaching practices, challenges, and learning processes. To effectively manage and analyze this information, it is crucial to adopt innovative methodologies and techniques. Recommender systems (RSs) offer a solution for advising students and guiding their learning journeys by utilizing statistical methods such as machine learning (ML) and graph analysis to analyze program and student data. This paper introduces an RS for advisors and students that analyzes student records to develop personalized study plans over multiple semesters. The proposed system integrates ideas from graph theory, performance modeling, ML, explainable recommendations, and an intuitive user interface. The system implicitly implements many academic rules through network analysis. Accordingly, a systematic and comprehensive review of different students’ plans was possible using metrics developed in the mathematical graph theory. The proposed system systematically assesses and measures the relevance of a particular student’s study plan. Experiments on datasets collected at the University of Dubai show that the model presented in this study outperforms similar ML-based solutions in terms of different metrics. Typically, up to 86% accuracy and recall have been achieved. Additionally, the lowest mean square regression (MSR) rate of 0.14 has been attained compared to other state-of-the-art regressors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.