Data-hiding using steganography algorithm becomes an important technique to prevent unauthorized users to have access to a secret data. In this paper, steganography algorithm has been constructed to hide a secret data in a gray and a color images, this algorithm is named deep hiding/extraction algorithm (DHEA) to modify multi-level steganography (MLS). The suggested hiding algorithm is based on modified least significant bit (MDLSB) to scatter data in a cover-image and it utilizes a number of levels; where each level perform hiding data on a gray image except the last level that applies a color image to keep secret data. Furthermore, proper randomization approach with two layers is implemented; the first layer uses random pixels selection for hiding a secret data at each level, while the second layer implements at the last level to move randomly from segment to the others. In addition, the proposed hiding algorithm implements an effective lossless image compression using DEFLATE algorithm to make it possible to hide data into a next level. Dynamic encryption algorithm based on Advanced Encryption Standard (AES) is applied at each level by changing cipher keys (Ck) from level to the next, this approach has been applied to increase the security and working against attackers. Soft computing using a meta-heuristic approach based on artificial bee colony (ABC) algorithm has been introduced to achieve smoothing on pixels of stego-image, this approach is effective to reduce the noise caused by a hidden large amount of data and to increase a stego-image quality on the last level. The experimental result demonstrates the effectiveness of the proposed algorithm with bee colony DHA-ABC to show high-performing to hide a large amount of data up to four bits per pixel (bpp) with high security in terms of hard extraction of a secret message and noise reduction of the stego-image. Moreover, using deep hiding with unlimited levels is promising to confuse attackers and to compress a deep sequence of images into one image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.