Our study demonstrated that 8 weeks of supplementation with 800 mg/day resveratrol has an antioxidant effect in the blood and PBMCs of patients with T2D. Clinical Trial Registry number and website IRCT registration number: IRCT2015072523336N1 and http://en.search.irct.ir/view/24752 .
Curcumin, a natural polyphenol compound, has the beneficial effects on several diseases such as metabolic syndrome, cancer, and diabetes. The anti-inflammatory property of curcumin has been demonstrated in different cells; however, its role in prevention of palmitate-induced inflammation in skeletal muscle C2C12 cells is not known. In this study, we examined the effect of curcumin on the inflammatory responses stimulated by palmitate in C2C2 cells. The results showed that palmitate upregulated the mRNA expression and protein release of IL-6 and TNF-α cytokines in C2C12 cells, while pretreatment with curcumin was able to attenuate the effect of palmitate on inflammatory cytokines. The anti-inflammatory effect of curcumin was associated with the repression of phosphorylation of IKKα-IKKβ, and JNK. Palmitate also caused an increase in reactive oxygen species (ROS) level that curcumin abrogated it. Collectively, these findings suggest that curcumin may represent a promising therapy for prevention of inflammation in skeletal muscle cells.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the novel global coronavirus (COVID-19) disease outbreak. Its pathogenesis is mostly located in the respiratory tract. However, other organs are also affected. Hence, realizing how such a complex disturbance affects patients after recovery is crucial. Regarding the significance of control of COVID-19-related complications after recovery, the current study was designed to review the cellular and molecular mechanisms linking COVID-19 to significant long-term signs including renal and cardiac complications, cutaneous and neurological manifestations, as well as blood coagulation disorders. This virus can directly influence on the cells through Angiotensin converting enzyme 2 (ACE-2) to induce cytokine storm. Acute release of Interleukin-1 (IL1), IL6 and plasminogen activator inhibitor (PAI-1) have been related to elevating risk of heart failure. Also, inflammatory cytokines like IL-8 and Tumor necrosis factor-α (TNF-α) cause the secretion of von Willebrand factor (VWF) from human endothelial cells and then VWF binds to Neutrophil extracellular traps (NETs) to induce thrombosis. On the other hand, the virus can damage the blood-brain barrier by increasing its permeability and subsequently enters into the central nervous system (CNS) and the systemic circulation. Furthermore, SARS-induced ACE2-deficiency decreases [des-Arg9]bradykinin (desArg9-BK) degradation in kidneys to induce inflammation, thrombotic problems, fibrosis and necrosis. Notably, the angiotensin II-angiotensin II type 1 receptor (ANGII-AT1R) binding causes an increase in aldosterone and mineralocorticoid receptors on the surface of dendritic cells (DC) cells, leading to recalling macrophage and monocyte into inflammatory sites of skin. In conclusions, all the pathways play a key role in the pathogenesis of these disturbances. Nevertheless, more investigations are necessary to determine more pathogenetic mechanisms of the virus.
Abstracts:
Due to the importance of control and prevention of COVID-19-correlated long-term symptoms, the present review article has summarized what has been currently known regarding the molecular and cellular mechanisms linking COVID-19 to important long-term complications including psychological complications, liver and gastrointestinal manifestations, oral signs as well as even diabetes. COVID-19 can directly affect the body cells through their Angiotensin-converting enzyme 2 [ACE-2] to induce inflammatory responses and cytokine storm. The cytokines cause the release of reactive oxygen species [ROS] and subsequently initiate and promote cell injuries. Another way, COVID-19-associated dysbiosis may be involved in GI pathogenesis. In addition, SARS-CoV-2 reduces butyrate-secreting bacteria and leads to the induction of hyperinflammation. Moreover, SARS-CoV-2-mediated endoplasmic reticulum stress induces de novo lipogenesis in hepatocytes, which leads to hepatic steatosis and inhibits autophagy via increasing mTOR. In pancreas tissue, the virus damages beta-cells and impairs insulin secretion. SARS-COV-2 may change the ACE2 activity by modifying ANGII levels in taste buds which leads to gustatory dysfunction. SARS-CoV-2 infection and its resulting stress can lead to severe inflammation that can subsequently alter neurotransmitter signals. This, in turn, negatively affects the structure of neurons and leads to mood and anxiety disorders. In conclusion, all the pathways mentioned earlier can play a crucial role in the disease's pathogenesis and related comorbidities. However, more studies are needed to clarify the underlying mechanism of the pathogenesis of the new coming virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.