Various modern security systems follow a tendency to simplify the usage of the existing biometric recognition solutions and embed them into ubiquitous portable devices. In this work, we continue the investigation and development of our method for securing identification documents. The original facial biometric template, which is extracted from the trusted frontal face image, is stored on the identification document in a secured personalized machine-readable code. Such document is protected from face photo manipulation and may be validated with an offline mobile application. We apply automatic methods of compressing the developed face descriptors to make the biometric validation system more suitable for mobile applications. As an additional contribution, we introduce several print-capture datasets that may be used for training and evaluating similar systems for mobile identification and travel documents validation.
Face morphing attack detection (MAD) is one of the most challenging tasks in the field of face recognition nowadays. In this work, we introduce a novel deep learning strategy for a single image face morphing detection, which implies the discrimination of morphed face images along with a sophisticated face recognition task in a complex classification scheme. It is directed onto learning the deep facial features, which carry information about the authenticity of these features. Our work also introduces several additional contributions: the public and easy-to-use face morphing detection benchmark and the results of our wild datasets filtering strategy. Our method, which we call MorDeephy, achieved the state of the art performance and demonstrated a prominent ability for generalising the task of morphing detection to unseen scenarios.
Face recognition has achieved outstanding performance in the last decade with the development of deep learning techniques.Nowadays, the challenges in face recognition are related to specific scenarios, for instance, the performance under diverse image quality, the robustness for aging and edge cases of person age (children and elders), distinguishing of related identities.In this set of problems, recognizing children's faces is one of the most sensitive and important. One of the reasons for this problem is the existing bias towards adults in existing face datasets.In this work, we present a benchmark dataset for children's face recognition, which is compiled similarly to the famous face recognition benchmarks LFW, CALFW, CPLFW, XQLFW and AgeDB. We also present a development dataset (separated into train and test parts) for adapting face recognition models for face images of children. The proposed data is balanced for African, Asian, Caucasian, and Indian races. To the best of our knowledge, this is the first standartized data tool set for benchmarking and the largest collection for development for children's face recognition. Several face recognition experiments are presented to demonstrate the performance of the proposed data tool set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.