A new
strategy is reported for the design and synthesis of high
sulfur-containing materials for potential use in covalent adaptable
networks and optical materials by combining photomediated thiol–ene-
and disulfide–ene-based polymerization reactions. Taking advantage
of the relative reaction rates to differentiate sequentially between
the thiol–ene and disulfide–ene conjugations, these
reactions were performed semiorthogonally to produce polymer networks
of controlled architecture. Kinetic analysis demonstrates that the
thiol–ene reaction is approximately 30 times faster than the
disulfide–ene reaction, enabling spatial and temporal manipulation
of material properties via dual-cure networks and
photopatterning. A two-stage polymerization approach was implemented
with increases in modulus in the second stage of 2–3 orders
of magnitude accompanied by increases in the glass-transition temperature
of more than 15 °C. Additionally, the thiol–ene reaction
in the presence of a disulfide yields materials capable of simultaneous
network development and stress relaxation through dynamic bond exchange
during in situ polymerization.
Excessive NF-κB activation contributes to the pathogenesis of numerous diseases. Small-molecule inhibitors of NF-κB signaling have significant therapeutic potential especially in treating inflammatory diseases and cancers. In this study, we performed a cell-based high-throughput screening to discover novel agents capable of inhibiting NF-κB signaling. On the basis of two hit scaffolds from the screening, we synthesized 69 derivatives to optimize the potency for inhibition of NF-κB activation, leading to successful discovery of the most potent compound Z9j with over 170-fold enhancement of inhibitory activity. Preliminary mechanistic studies revealed that Z9j inhibited NF-κB signaling via suppression of Src/Syk, PI3K/Akt, and IKK/IκB pathways. This novel compound also demonstrated antiinflammatory and anticancer activities, warranting its further development as a potential multifunctional agent to treat inflammatory diseases and cancers.
This article describes a stimuli-responsive cross-linked network based on a poly(phthalaldehyde) (PPA) self-immolating polymer backbone which, upon removal of polymer end-caps, becomes degradable under ambient conditions. Self-immolating polymers (SIPs) are of particular interest due to their ability to undergo controlled depolymerization resulting in the elimination of the polymer structure and potential recovery and reuse of the original monomers. Linear copolymers of phthalaldehyde and unsymmetrical allylated-phthalaldehyde monomers are obtained via anionic polymerization with appreciable incorporation of the allyl-functional monomeric units. This approach enables crosslinking of the otherwise linear polymers via thiol-ene reactions with the allyl functional phthalaldehyde polymers. The polymer network thus formed unzips along the phthalaldehyde backbone to yield monomers and low molecular weight fragments in response to chemical (F − , H + ) or physical (light, sonication) stimuli that remove the stabilizing functional endcaps on the phthalaldehyde polymers. Rheology is used to demonstrate gelation within 5 s of light exposure of the allylated-phthalaldehyde polymers reacted with pentaerythritol tetrakis(3-mercaptopropionate) and photoinitiator (3 wt%). Triggerable degelation makes this material well suited for photolithography and additive manufacturing as well as other applications that necessitate polymer network degradation or elimination. Further, a method is described for determining the degelation temperature of a self-immolative cross-linked network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.