Milk is a highly complex, heterogeneous biological fluid that contains non-nutritive, bioactive extracellular vesicles called exosomes. Characterization of milk-derived exosomes (MDEs) is challenging due to the lack of standardized methods that are currently being used for milk pre-processing, storage, and exosome isolation. In this study, we tested: 1) three pre-processing methods to remove cream, fat, cellular debris, and casein proteins from bovine milk to determine whether pre-processing of whole milk prior to long-term storage improves MDE isolations, 2) the suitability of two standard exosome isolation methods for MDE fractionation, and 3) four extraction protocols for obtaining high quality RNA from bovine and human MDEs. MDEs were characterized via Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and western immunoblotting for CD9, CD63, and Calnexin protein markers. We also present an optimized method of TEM sample preparation for MDEs. Our results indicate that: 1) Removal of cream and fat globules from unpasteurized bovine milk, prior to long-term storage, improves the MDE yield but not purity, 2) Differential ultracentrifugation (DUC) combined with serial filtration is better suited for bovine MDE isolation compared to ExoQuick (EQ) combined with serial filtration, however both methods were comparable for human milk, and 3) TRIzol LS is better suited for RNA extraction from bovine MDEs isolated by EQ and DUC methods. 4) TRIzol LS, TRIzol+RNA Clean and Concentrator, and TRIzol LS+RNA Clean and Concentrator methods can be used for RNA extractions from human MDEs isolated by EQ, yet the TRIzol LS method is better suited for human MDEs isolated by DUC. The QIAzol + miRNeasy Mini Kit produced the lowest RNA yield for bovine and human MDEs.
Lactation is a critical time in mammalian development, where maternal factors shape offspring outcomes. In this scoping review, we discuss current literature concerning maternal factors that influence lactation biology and highlight important associations between changes in milk composition and offspring outcomes. Specifically, we explore maternal nutritional, psychosocial, and environmental exposures that influence non-nutritive bioactive components in milk and their links to offspring growth, development, metabolic, and behavioral outcomes. A comprehensive literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines. Predetermined eligibility criteria were used to analyze 3,275 papers, and the final review included 40 primary research articles. Outcomes of this review identify maternal obesity to be a leading maternal factor influencing the non-nutritive bioactive composition of milk with notable links to offspring outcomes. Offspring growth and development are the most common modes of programming associated with changes in non-nutritive milk composition due to maternal factors in early life. In addition to discussing studies investigating these key associations, we also identify knowledge gaps in the current literature and suggest opportunities and considerations for future studies.
In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to eradication failure in many cases, but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. Targeting the three EPSs secreted by P. aeruginosa (alginate, Psl and Pel) is currently under investigation as a way of disrupting the biofilm extracellular matrix to potentiate the action of antibiotics. In this review, we look at each EPS as a potential therapeutic target for combatting pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.
We previously demonstrated that P. aeruginosa isolates that persisted in children with cystic fibrosis (CF) despite inhaled tobramycin treatment had increased anti-Psl antibody binding in vitro compared to those successfully eradicated. We aimed to validate these findings by directly visualizing P. aeruginosa in CF sputum. This was a prospective observational study of children with CF with new-onset P. aeruginosa infection who underwent inhaled tobramycin eradication treatment. Using microbial identification passive clarity technique (MiPACT), P. aeruginosa was visualized in sputum samples obtained before treatment and classified as persistent or eradicated based on outcomes. Pre-treatment isolates were also grown as biofilms in vitro. Of 11 patients enrolled, 4 developed persistent infection and 7 eradicated infection. P. aeruginosa biovolume and the number as well as size of P. aeruginosa aggregates were greater in the sputum of those with persistent compared with eradicated infections (p < 0.01). The amount of Psl antibody binding in sputum was also greater overall (p < 0.05) in samples with increased P. aeruginosa biovolume. When visualized in sputum, P. aeruginosa had a greater biovolume, with more expressed Psl, and formed more numerous, larger aggregates in CF children who failed eradication therapy compared to those who successfully cleared their infection.
Milk is a highly complex, heterogeneous biological fluid that contains bioactive, membrane-bound extracellular vesicles called exosomes. Characterization of milk-derived exosomes (MDEs) is challenging due to the lack of standardized methods that are currently being used for milk pre-processing, exosome isolation, and RNA extraction. In this study, we tested: 1) three pre-processing methods to remove cream, fat, and casein proteins from bovine milk to determine whether pre-processing of whole milk, prior to long-term storage, improves MDE isolations, 2) two commonly-used exosome isolation methods, and 3) four extraction protocols for obtaining high quality MDE RNA from bovine and human milk. MDEs were characterized via Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA). We also present an optimized method of TEM sample preparation and isolation of total soluble protein from MDEs. Our results indicated that: 1) pre-processing of bovine milk prior to storage does not affect the final exosome yield or the purity, 2) ExoQuick precipitation is better suited for MDE isolation than ultracentrifugation for bovine and human milk, and 3) TRIzol LS produced the highest RNA yield in bovine milk, whereas TRIzol LS, TRIzol+RNA Clean and Concentrator, and TRIzol LS+RNA Clean and Concentrator methods can be used for human milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.