Stem cell-based therapy presents an attractive alternative to conventional therapies for degenerative diseases. Numerous studies have investigated the capability of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) to contribute to the regeneration of cardiomyocytes, and the results have encouraged further basic and clinical studies on the MSC-based treatment of cardiomyopathies. This study aimed to determine the potential of cardiomyogenic transcription factors in differentiating hUC-MSCs into cardiac-like cells in vitro. MSCs were isolated from umbilical cord tissue and were transduced with the transcription factor genes, GATA-4 and Nkx 2.5, via infection with lentiviruses, to promote differentiation into the cardiomyogenic lineage. Gene and protein expression were analysed with qPCR and immunocytochemical staining. After transduction, differentiated cardiac-like cells showed significant expression of cardiac genes and proteins, namely GATA-4, Nkx-2.5, cardiac troponin I (cTnI) and myosin heavy chain (MHC). The cardiomyogenic-induced group significantly overexpressed cardiac-specific genes ( GATA-4, Nkx-2.5, cTnI, MHC, α-actinin and Wnt2). Expression of the calcium channel gene was also significantly increased, while the sodium channel gene was downregulated in the transduced hUC-MSCs, as compared to non-transduced cells. The results suggest that GATA-4 and Nkx-2.5 interact synergistically in the activation of downstream cardiac transcription factors, demonstrating the functional convergence of hUC-MSC differentiation into cardiac-like cells. These findings could potentially be utilised in the efficient production of cardiac-like cells from stem cells; these cardiac-like cells could then be used in various applications, such as for in vivo implantation in infarcted myocardium, and for drug screening in toxicity testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.