Purpose
Customer insurance coverage sales plan problem, in which the loyal customers are recognized and offered some special plans, is an essential problem facing insurance companies. On the other hand, the loyal customers who have enough potential to renew their insurance contracts at the end of the contract term should be persuaded to repurchase or renew their contracts. The aim of this paper is to propose a three-stage data-mining approach to recognize high-potential loyal insurance customers and to predict/plan special insurance coverage sales.
Design/methodology/approach
The first stage addresses data cleansing. In the second stage, several filter and wrapper methods are implemented to select proper features. In the third stage, K-nearest neighbor algorithm is used to cluster the customers. The approach aims to select a compact feature subset with the maximal prediction capability. The proposed approach can detect the customers who are more likely to buy a specific insurance coverage at the end of a contract term.
Findings
The proposed approach has been applied in a real case study of insurance company in Iran. On the basis of the findings, the proposed approach is capable of recognizing the customer clusters and planning a suitable insurance coverage sales plans for loyal customers with proper accuracy level. Therefore, the proposed approach can be useful for the insurance company which helps them to identify their potential clients. Consequently, insurance managers can consider appropriate marketing tactics and appropriate resource allocation of the insurance company to their high-potential loyal customers and prevent switching them to competitors.
Originality/value
Despite the importance of recognizing high-potential loyal insurance customers, little study has been done in this area. In this paper, data-mining techniques were developed for the prediction of special insurance coverage sales on the basis of customers’ characteristics. The method allows the insurance company to prioritize their customers and focus their attention on high-potential loyal customers. Using the outputs of the proposed approach, the insurance companies can offer the most productive/economic insurance coverage contracts to their customers. The approach proposed by this study be customized and may be used in other service companies.
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers' behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k-means algorithm. Then, the cluster analysis is conducted based on two criteria, i.e., the number of hours the telecom services used and the number of the services selected by customers of each group. Six groups of customers are identified in three levels of attractiveness according to the results of the customer portfolio analysis. The second phase has been devoted to mining the future behavior of the customers. Predicting the level of attractiveness of newcomer customers and also the churn behavior of these customers are accomplished in the second phase. This framework effectively helps the telecom managers mine the behavior of their customers. This may lead to develop appropriate tactics according to customers' attractiveness and their churn behavior. Improving managers' abilities in customer relationship management is one of the obtained results of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.