Please cite this article as follows: Amandokht Saghezchi S, Azad N, Heidari R, Jajarmi V, Abdi S, Abaszadeh HA, et al. The effect of prenatal exposure to 2.4 GHz radio frequency on the histology and expression of the osteocalcin and RUNX2 gene of the forelimb in an NMRI mouse. AbstractIntroduction: Today the use of electromagnetic waves has dramatically increased in modern industrial societies. This study aimed to investigate the effect of prenatal exposure to 2.4 GHz wireless frequency on forelimb development in an NMRI mouse in vivo. Methods: A total of 21 female mice weighing 25-30 g were included in the present study. They were randomly assigned to 3 groups, namely control (n=7), sham (n=7), and experimental (n=7). After mating, the experimental group was exposed to 2.4 GHz radio frequency at a distance of 20-30 cm from the device, 4 h/d until the delivery. The sham group was placed at a distance of 20-30 cm from the device every day without exposure to electromagnetic waves, and the control group had a pregnancy period without any stress and electromagnetic wave exposure. After giving birth, the forelimbs were isolated from the infants and examined by stereological studies and RT-PCR for the evaluation of osteocalcin and RUNX2 gene expression. Results: Although, at first glance, there was no macroscopic teratogen effect in forelimbs in all groups, via a stereological method, we showed that bone and cartilage volume decreased in the experimental group compared to the other groups. We also found that the experimental group had lower expression of the osteocalcin and RUNX2 gene than the control and sham groups did. However, there were no significant differences between the control and sham groups in terms of bone and cartilage volume and gene expression. Conclusion: Although teratogen effect of prenatal exposure to 2.4 GHz radio frequency on forelimbs was not demonstrated macroscopically, further studies showed negative effects on the forelimb bone, cartilage volume, and gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.