BackgroundHelicobacter pylori (H. pylori) is one of the most common bacterial infections in humans and this infection can lead to gastric ulcers and gastric cancer. H. pylori is one of the most genetically variable human pathogens and the ability of the bacterium to bind to the host epithelium as well as the presence of different virulence factors and genetic variants within these genes have been associated with disease severity. Nicaragua has particularly high gastric cancer incidence and we therefore studied Nicaraguan clinical H. pylori isolates for factors that could contribute to cancer risk.MethodsThe complete genomes of fifty-two Nicaraguan H. pylori isolates were sequenced and assembled de novo, and phylogenetic and virulence factor analyses were performed.ResultsThe Nicaraguan isolates showed phylogenetic relationship with West African isolates in whole-genome sequence comparisons and with Western and urban South- and Central American isolates using MLSA (Multi-locus sequence analysis). A majority, 77 % of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 vacuolating cytotoxin, vacA allele combination, which is linked to increased severity of disease. Specifically, we also found that Nicaraguan isolates have a blood group-binding adhesin (BabA) variant highly similar to previously reported BabA sequences from Latin America, including from isolates belonging to other phylogenetic groups. These BabA sequences were found to be under positive selection at several amino acid positions that differed from the global collection of isolates.ConclusionThe discovery of a Latin American BabA variant, independent of overall phylogenetic background, suggests hitherto unknown host or environmental factors within the Latin American population giving H. pylori isolates carrying this adhesin variant a selective advantage, which could affect pathogenesis and risk for sequelae through specific adherence properties.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0619-y) contains supplementary material, which is available to authorized users.
Helicobacter pylori, a gastroenteric pathogen believed to have co-evolved with humans over 100,000 years, shows significant genetic variability. This motivates the study of different H. pylori strains and the diseases they cause in order to identify determinants for disease evolution. In this study, we used proteomics tools to compare two H. pylori strains. Nic25_A was isolated in Nicaragua from a patient with intestinal metaplasia, and P12 was isolated in Europe from a patient with duodenal ulcers. Differences in the abundance of surface proteins between the two strains were determined with two mass spectrometry-based methods, label-free quantification (MaxQuant) or the use of tandem mass tags (TMT). Each approach used a lipid-based protein immobilization (LPITM) technique to enrich peptides of surface proteins. Using the MaxQuant software, we found 52 proteins that differed significantly in abundance between the two strains (up- or downregulated by a factor of 1.5); with TMT, we found 18 proteins that differed in abundance between the strains. Strain P12 had a higher abundance of proteins encoded by the cag pathogenicity island, while levels of the acid response regulator ArsR and its regulatory targets (KatA, AmiE, and proteins involved in urease production) were higher in strain Nic25_A. Our results show that differences in protein abundance between H. pylori strains can be detected with proteomic approaches; this could have important implications for the study of disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.