Climate change is a global issue that must be considered and addressed immediately. Many articles have been published on climate change mitigation and adaptation. However, new methods are required to explore the complexities of climate change and provide more efficient and effective adaptation and mitigation policies. With the advancement of technology, machine learning (ML) and deep learning (DL) methods have gained considerable popularity in many fields, including climate change. This paper aims to explore the most popular ML and DL methods that have been applied for climate change mitigation and adaptation. Another aim is to determine the most common mitigation and adaptation measures/actions in general, and in urban areas in particular, that have been studied using ML and DL methods. For this purpose, word frequency analysis and topic modeling, specifically the Latent Dirichlet allocation (LDA) as a ML algorithm, are used in this study. The results indicate that the most popular ML technique in both climate change mitigation and adaptation is the Artificial Neural Network. Moreover, among different research areas related to climate change mitigation and adaptation, geoengineering, and land surface temperature are the ones that have used ML and DL algorithms the most.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.