The diverse electrical, chemical and structural properties of the functional derivatives of carbon nanotubes (CNTs) have shown biomedical possibilities for neuroprosthesis or neural interfaces. However, the studies have been generally confined to metallic CNTs that affect cell viability unless chemically functionalized for biocompatibility. Here, we explored the effects of semiconducting single-walled carbon nanotubes (ssw-CNT), on the active electrical properties of dissociated hippocampal neurons in-vitro using multielectrode array, calcium imaging and whole-cell patch clamp recordings. The findings show that ssw-CNT treatment regulates neural network excitability from burst to tonic firing by changing the calcium dynamics. However, at a single neuronal level, ssw-CNT increases neuronal excitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.