Infanticide and offspring cannibalism are taxonomically widespread phenomena. In some group-living species, a new dominant individual taking over a group can benefit from infanticide if doing so induces potential mates to become reproductively available sooner. Despite widespread observations of infanticide (i.e. egg cannibalism) among fishes, no study has investigated whether egg cannibalism occurs in fishes as a result of group takeovers, or how this type of cannibalism might be adaptive. Using the cooperatively breeding cichlid, Neolamprologus pulcher, we tested whether new unrelated males entering the dominant position in a social group were more likely to cannibalize eggs, and whether such cannibalism would shorten the interval until the female's next spawning. Females spawned again sooner if their broods were removed than if they were cared for. Egg cannibalism occurred frequently after a group takeover event, and was rarer if the original male remained with the group. While dominant breeder females were initially highly aggressive towards newcomer males that took over the group, the degree of resistance depended on relative body size differences between the new pair and, ultimately, female aggression did not prevent egg cannibalism. Egg cannibalism, however, did not shorten the duration until subsequent spawning, or increase fecundity during subsequent breeding in our laboratory setting. Our results show that infanticide as mediated through group takeovers is a taxonomically widespread behaviour.
Anthropogenic pollution and the introduction of invasive species are two contributing factors to ecosystem degradation. Although Hamilton Harbour (Ontario, Canada), a highly impacted ecosystem, is well-studied, the diet, trophic position, and foraging behaviour of the invasive Round Goby (Neogobius melanostomus) in this area is not well understood. In this study, we compared digestive tract contents, foraging behaviour, and stable isotope values of Round Goby from sites of low and high sediment contamination in Hamilton Harbour. We also assessed prey availability by conducting sediment invertebrate abundance analyses at these sites. Regardless of site, Chironomids, Cladocerans, Copepods and Dreissenids were the most common food items found in Round Goby digestive tracts, and females always had heavier gut contents compared to males. Fish from the high contamination site consumed fewer prey items, had lower gut fullness scores, and fed at a lower trophic level based on lower δ13C and δ15N values. Our results suggest that Round Goby living in highly contaminated areas are feeding less than Round Goby from areas of lower contamination, but that these diet differences do not reflect differences in prey availability. Fish from the high contamination site also typically moved more slowly while foraging. Taken together, these results provide an analysis of the main prey items of Round Goby in Hamilton Harbour, and demonstrate how polluted environments can impact diet, trophic position, and foraging of an introduced fish species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.