The COVID-19 outbreak has demonstrated the diverse challenges that supply chains face to significant disruptions. Vaccine supply chains are no exception. Therefore, it is elemental that challenges to the COVID-19 vaccine supply chain (VSC) are identified and prioritized to pave the way out of this pandemic. This study combines the decision-making trial and evaluation laboratory (DEMATEL) method with intuitionistic fuzzy sets (IFS) to explore the key challenges of the COVID-19 VSC. The IFS theory tackles the uncertainty of key challenges while DEMATEL addresses the interlaced causal relationships among crucial challenges to the COVID-19 VSC. This work identifies 15 challenges and reveals that ‘Limited number of vaccine manufacturing companies’, ‘Inappropriate coordination with local organizations’, ‘Lack of vaccine monitoring bodies’, ‘Difficulties in monitoring and controlling vaccine temperature’, and ‘Vaccination cost and lack of financial support for vaccine purchase’ are the most critical challenges. The causal interactions along with mutual relationships among these challenges are also scrutinized, and implications for sustainable development goals (SDGs) are drawn. The results offer practical guidelines for stakeholders and government policy makers around the world to develop an improved VSC for the COVID-19 virus.
For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m x 4.0 m x 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm -1 K -1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0°, 15°, 30°, 45°, 60°a nd simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0°is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (Attic A-B ) and indoor condition (Indoor A-B ) is +7.8°C and 0.4°C respectively with an average energy monthly savings of 3.9 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.