With the continuing efforts to explore alternatives to petrochemical-based polymers and the escalating demand to minimize environmental impact, bio-based polymers have gained a massive amount of attention over the last few decades. The potential uses of these bio-based polymers are varied, from household goods to high end and advanced applications. To some extent, they can solve the depletion and sustainability issues of conventional polymers. As such, this article reviews the trends and developments of bio-based polymers for the preparation of polymer electrolytes that are intended for use in electrochemical device applications. A range of bio-based polymers are presented by focusing on the source, the general method of preparation, and the properties of the polymer electrolyte system, specifically with reference to the ionic conductivity. Some major applications of bio-based polymer electrolytes are discussed. This review examines the past studies and future prospects of these materials in the polymer electrolyte field.
River pollution impact human health, environment and the sustainable development. This study was conducted to identify spatial patterns and the main parameters affecting the water pollution within nine monitoring stations in the Muda River basin (Malaysia) over a 16-year database (1998-2013). Environmetric techniques were applied to the dataset. These combined Cluster Analysis, Discriminant Analysis, and Multiple Linear Regression. The Cluster Analysis showed that the monitoring stations divided into two separate groups based on similarities features of water quality while Discriminant Analysis validated these groups. Furthermore, the Multiple Linear Regression analysis showed that the significant parameters contributing to variability the Water Quality Index was biological oxygen demand, chemical oxygen demand and ammonia nitrogen. This was due to the point-source pollution, particularly from rubber factory. Therefore, the results provided information to support future water pollution control strategies.
Lyotropic liquid crystalline nanoparticles (LLCNPs) have recently received much attention in the application of drug delivery systems, due to their ordered and versatile internal nanostructures that are considered as a key factor in improving loading efficiency of various poorly soluble therapeutic agents. To take advantage on their unique well-defined and flexible internal nanostructures, aripiprazole-loaded LLCNPs consisted of a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) were developed in this study. Despite exhibiting low aqueous solubility which lead to difficulties in formulation, aripiprazole, a class of psychotropic drug called atypical anti-psychotics has been used in the treatment of schizophrenia and bipolar disorder with few side effects. The utmost interest in this study is to explore the potential of LLCNPs in improving the percentage of encapsulation efficiency (EE%) of aripiprazole, their effect on the internal nanostructure of LLCNPs mesophases as well as the drug release performance from LLCNPs. The particle size of drug-loaded LLCNPs produced was in the range of 161-186 nm, with polydispersity index (PDI) between 0.11-0.16, and negative zeta potential of -21.5 to -23.8 mV. Small-angle X-ray scattering (SAXS) measurements indicated that the internal nanostructures of LLCNPs are of inverse hexagonal (H2) with a negligible difference in the lattice parameter before and after drug loading. Transmission electron microscopy (TEM) was used to observe the morphology and overall size distribution of drug-free and drug-loaded nanodispersions, which supported both SAXS and particles size findings. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy demonstrated that aripiprazole interacted physically with binary mixture of citrem/SPC within the nanodispersions. Moreover, the results showed that aripiprazole was successfully encapsulated into LLCNPs nanoparticles, where the EE% was all above 92%. These LLCNPs were not only have a high EE% value, but also exhibited a sustained release performance of aripiprazole with the release capacity of around 97% up to 96 h. From the current study, the potential use of LLCNPs as a promising nanocarrier for aripiprazole delivery is anticipated to improve the pharmacokinetics of this drug whilst enduring the internal nanostructural stability of the LLCNPs upon exposure to physiological environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.