An assessment of the competitive indexes in intercropping of different winter and summer based intercropping systems were studied, with the aim of increasing the productivity of these crops. Four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) and four summer crops, sorghum (Sorghum bicolor L.), pearl millet (Pennisetum typhoidum L.), pigeonpea (Cajanus cajan L.) and mungbean (Vigna radiate L.) were grown under two irrigation regimes with the pattern of two crops in each intercropping system, at Agronomy Research Farm, The University of Agriculture, Peshawar, Pakistan in both winter and summer season during 2015–16 to 2016–17. The results showed that higher grain yield (kg ha−1) were recorded under sole cropping than intercropping. Higher grain yield was recorded in sole cropping, for all four crops. All crops grown in intercropping produced comparatively higher grains head−1 and seeds pod−1 than sole crop except pigeonpea. Intercropping systems were performed different in term of competition indexes which determined land utilization efficiency. Competition indexes revealed that in winter season wheat intercropped with fababean showed highest advantages of intercropping in term of land equivalent ratio (30%), relative crowding co-efficient (60%), actual yield loss (60%), area time equivalent ratio (27%), land utilization efficiency (83%), intercropping advantages (1060), monetary advantage index (Pakistani rupees (PKR) 46456) and system productivity index (3684) while in summer sorghum/pearl millet intercropped with pigeonpea was the most dominant intercropping systems in term of relative crowding co-Efficient (40%), actual yield loss (50%), land utilization efficiency (60%) intercropping advantages (1150) and system productivity index (1914). Aggressivity and competition ratio showed that cereals especially barley in winter and sorghum in summer season was highly competitive crops in the intercropping system. Most of the competition indexes values were higher for winter crops under limited irrigated condition while in case of summer crops intercropping indexes were higher under full irrigated condition. It was concluded that wheat intercropped with fababean, and sorghum/millet intercropped with mung bean was the most successful intercropping systems in winter and summer seasons, respectively under both irrigation regimes, for the semiarid region of Pakistan.
Phosphorus unavailability and lack of organic matter in the soils under semiarid condition are the major reasons for low crop productivity. Field trial was conducted to investigate the impact of different animal manures (poultry, cattle, and sheep manures) and phosphorus levels (40, 80, 120, and 160 kg P 2 O 5 ha −1) on yield and yield components of hybrid maize (CS-200) with (+) and without (−) phosphate-solubilizing bacteria (PSB) seed treatment at the Agronomy Research Farm of The University of Agriculture Peshawar, during summer 2014. Our results confirmed that the application of poultry manure significantly (P ≤ 0.05) increased yield and yield components of maize. Phosphorus applied at the rate of 120 kg P 2 O 5 ha −1 increased ear length, grains ear −1 , and shelling percentage, while the highest rate of 160 kg P ha −1 increased grains weight, grain yield, and harvest index. Maize seeds treated with PSB (+) before sowing had produced higher yield and yield components than untreated seeds (−). We concluded from this study that combined application of 160 kg P 2 O 5 ha −1 + poultry manure and seed treatment with PSB (+) could improve crop productivity and profitability under semiarid condition.
Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility and reduce crop productivity as well as zinc (Zn) concentrations in rice grains and straw. Low Zn concentrations in rice grains have a negative impact on human health, while low Zn concertation in rice straw creates a nutritional problem for animals. The current high yielding rice varieties and hybrids remove large quantities of Zn from the soils, lowering the residual concentrations of soil Zn for the subsequent crop (e.g., wheat). Field experiments were conducted on farmers field in Malakand with the objective to evaluate the impact of various combinations of phosphorus (0, 40, 80, and 120 kg ha−1) and Zn levels (0, 5, 10, and 15 kg ha−1) on biofortification of Zn in grains and straw of rice genotypes [fine (Bamati-385) vs. coarse (Fakhre-e-Malakand and Pukhraj)]. The results revealed that Zn biofortification in rice genotypes increased with the integrated use of both nutrients (P + Zn) when applied at higher rates (80 and 120 kg P ha−1, and 10 and 15 kg Zn ha−1, respectively). The biofortification of Zn in both grains and straw was higher in the coarse than fine rice genotypes (Pukhraj > Fakhre-e-Malakand > Basmati-385). It was concluded from this study that the application of higher P and Zn levels increased Zn contents in rice parts (grains and straw) under the rice-wheat system. We also concluded from this study that Zn concentrations in rice grains and straw are influenced by plant genetic factors and Zn management practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.