The environmental issues we are currently facing require long-term prospective efforts for sustainable growth. Renewable energy sources seem to be one of the most practical and efficient alternatives in this regard. Understanding a nation's pattern of energy use and renewable energy production is crucial for developing strategic plans. No previous study has been performed to explore the dynamics of power consumption with the change in renewable energy production on a country-wide scale. In contrast, a number of deep learning algorithms demonstrated acceptable performance while handling sequential data in the era of data-driven predictions. In this study, we developed a scheme to investigate and predict total power consumption and renewable energy production time series for eleven years of data using a Recurrent Neural Network (RNN). The dynamics of the interaction between the total annual power consumption and renewable energy production are investigated through extensive Exploratory Data Analysis (EDA) and a feature engineering framework. The performance of the model is found satisfactory through the comparison of the predicted data with the observed data, visualization of the distribution of the errors and Root Mean Squared Error (RMSE) value of 0.084. Higher performance is achieved through the increase in the number of epochs and hyperparameter tuning. The proposed framework can be used and transferred to investigate the trend of renewable energy production and power consumption and predict the future scenarios for different communities. Incorporation of the cloud-based platform into the proposed pipeline may lead to real-time forecasting.
The environmental issues we are currently facing require long-term prospective efforts for sustainable growth. Renewable energy sources seem to be one of the most practical and efficient alternatives in this regard. Understanding a nation’s pattern of energy use and renewable energy production is crucial for developing strategic plans. No previous study has been performed to explore the dynamics of power consumption with the change in renewable energy production on a country-wide scale. In contrast, a number of deep learning algorithms have demonstrated acceptable performance while handling sequential data in the era of data-driven predictions. In this study, we developed a scheme to investigate and predict total power consumption and renewable energy production time series for eleven years of data using a recurrent neural network (RNN). The dynamics of the interaction between the total annual power consumption and renewable energy production were investigated through extensive exploratory data analysis (EDA) and a feature engineering framework. The performance of the model was found to be satisfactory through the comparison of the predicted data with the observed data, the visualization of the distribution of the errors and root mean squared error (RMSE), and the R2 values of 0.084 and 0.82. Higher performance was achieved by increasing the number of epochs and hyperparameter tuning. The proposed framework has the potential to be used and transferred to investigate the trend of renewable energy production and power consumption and predict future scenarios for different communities. The incorporation of a cloud-based platform into the proposed pipeline to perform predictive studies from data acquisition to outcome generation may lead to real-time forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.