The Head Injury Criterion (HIC) has been employed as a measure of traumatic brain injury arising from an impact involving linear acceleration. Some investigators have been reported the shortcomings of the HIC regarding the angular accelerations, head mass and the precise threshold of injury level [1, 2]. In this study the effect of acceleration curves, as a frontal impact, and the HIC values on the strain in the brain was critically analyzed. Specifically in this paper, the strains in the brain for three sets of acceleration pulses, where the peak of the curve takes place early or later (advanced or delayed) during the pulse time, were investigated. The results of this study indicate that for two different acceleration pulses, with the same peak value, duration and the same HIC values the strains in the brain are different. Therefore there is a need for further research leading to better criteria or modification of the HIC as it relates to the Traumatic Brain Injury (TBI).
Traumatic brain injury (TBI) is an intracranial injury caused by impacts or angular accelerations of the head such as a violent blow, a bump, a projectile, or even a blast. TBI is a major problem that accounts for over 1.4 million emergency room visits in US. Thus, it is important to understand and predict the occurrence of TBI. Previous studies have shown that the interaction between the subarachnoid space (SAS) trabeculae and the cerebrospinal fluid (CSF) plays an important role in damping the effect of impacts and reducing the brain injuries. However, the influence of sulci parameters and sulci trabeculae in impact induced TBI is still unexplored. A few studies have shown that inclusion of sulci in brain models alters the brain injuries conclusions, even though those models do not take into account the trabecular tissue present in the sulci. In this study, to obtain a perspective of the morphology and architecture of the sulci trabeculae at the frontal lobe of the brain, Human cadaver brain of an 87 year old male was used. For the first experiment, several sulci from the frontal lobe were sectioned and measured to find the average sulci depth, using the image processing software called ‘ImageJ’. This experiment was followed by the Scanning Electron Microscopy (SEM) study on the samples prepared from the frontal lobe. Indeed, numerous images were taken at various magnifications to find different trabecular morphology and architecture in the sulci. The results from the experimental studies were used in our numerical analyses. To do so, the validated global 3D FE model of the human head and neck, created at The City College of New York, were impacted by a rigid barrier on the forehead. The pressure time history, beneath the skull, was calculated during and after the impact. Moreover, a local 3D FE model has been created, having the meninges and the brain with sulci, including the trabeculae and the CSF. The depth of the sulci and the architecture of the trabeculae have been inspired by the imaging and SEM studies. Indeed, the top surface of the local model was subjected to the pressure loading condition obtained from the global model. The results of the finite element simulations reveal that the interaction between the trabeculae and the CSF inside the sulci, would affect and reduce the movement and displacement of gyri and sulci’s walls when the forehead of the head is impacted by an elastic barrier.
The human brain trabeculae contain strands of collagen tissues connecting the arachnoid to the pia mater. In this paper the mechanotransductions of the external loads to the head passing through different trabecular architectures of the subarachnoid space were investigated. This has been accomplished by creating several local 2-D models consist of skull, dura mater, arachnoid, trabecular architecture and the brain. Different orientations of several architectures of the trabeculae were also analyzed. All models were subjected to the same loading and constraints. The strains in the brain for each model of the architecture and morphology were determined and compared to other corresponding models. It is concluded that the strain in the brain is less where the tree-shape trabeculae are upright, where the branches are attached to the arachnoid mater and the stems are attached to the pia mater. In addition, in the case of other morphologies the strain in the brain is less when the ratio of the trabecular area to the CSF space is less.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.