A queuing network model related to arrival, departure and berthing process of ships at port container terminal is presented in this paper. The important datas collected from PTP port container terminal located at Malaysia. Based on the case study the model was built with using Arena 13.5 simulation software. Especially this study proposes a hybrid approach consisting of Genetic algorithm (GA), Artificial Neural Network (ANN) to find the the optimum number of equipments at berthing area of port container terminal. The input data that used in ANN obtained from Arena results. The main goal of this study is reduced waiting time of each ship at port container terminal, and Based on the result the optimum waiting time 50 will be achieved.
It has been always critical and inevitable to select and assess the appropriate and efficient vendors for the companies such that all the aspects and factors leading to the importance of the select process should be considered. This paper studies the process of selecting the vendors simultaneously in three aspects of multiple criteria, random factors, and reaching efficient solutions with the objective of improvement. Thus, selecting the vendors is introduced in the form of a mixed integer multiobjective stochastic problem and for the first time it is converted by CCGC (min-max) model to a mixed integer nonlinear single objective deterministic problem. As the converted problem is nonlinear and solving it in large scale will be time-consuming then the artificial bee colony (ABC) algorithm is used to solve it. Also, in order to better understand ABC efficiency, a comparison is performed between this algorithm and the particle swarm optimization (PSO) and the imperialist competitive algorithm (ICA) and Lingo software output. The results obtained from a real example show that ABC offers more efficient solutions to the problem solving in large scale and PSO spends less time to solve the same problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.