Silica diagenesis leads to dramatic petrophysical variations in the host sediment across the depth of an opal-A to opal-CT transition zone. Predicting the present-day diagenetic status of opal-A to opal-CT transition zones, i.e., active versus fossilized fronts, is essential to constraining the drivers that control abrupt changes in the physical state of sediment. This study assesses whether there are modern signatures of ongoing silica diagenesis in the sediment pore water, and demonstrates the potential for pore-water-chemistry profiles for distinguishing between active opal-CT precipitation and fossil transition zones. Pore-water chemistry, mineralogy, and thermodynamic analyses of the Ocean Drilling Program Wells 794 and 795 indicate that solubility equilibrium has been reached with respect to opal-CT in the transition zones captured by the Neogene biosilica in the Sea of Japan. Even though silica dissolution might be triggering a reverse-weathering process, the equilibrium reached with respect to diagenetic opal strongly suggests that the silica drop across the transition zones is mainly influenced by active opal-A to opal-CT transformation. Owing to abrupt petrophysical variations associated with opal-CT formation, other interstitial profiles—major ions and primary parameters—have been influenced by silica diagenesis. The extremely low silica diffusion fluxes in the sediment, the low permeability of host sediment, and the occurrence of considerable pore-water loss at the depth of the transition zone all support this conclusion that the dissolved species have not been diffused in the sediment at rates comparable to those by pore-water advection. Advection and diffusion, however, appear to have ceased recently because they have failed to smooth the signature of ongoing silica diagenesis. The porosity drop during opal-A to opal-CT diagenesis at Sites 794 and 795 is principally attributed to chemically induced anomalous compaction, causing the sediment framework to lose its strength under fragmentation and extensive opal-A dissolution.
This paper evaluates previously proposed diagnostic criteria that can be used to determine whether or not there is active migration of the opal‐A to opal‐CT transition zone (TZA/CT). The criteria are based on the interpretation of 2D and 3D seismic surveys and are therefore geometrical. They involve an assessment of the relationship of the TZA/CT with polygonal fault systems, differential compaction structures and tectonic folds. The most robust evidence for an inactive ‘reaction front’ between opal‐A and opal‐CT bearing sediments is the discordance of the TZA/CT relative to present‐day isotherms. Any of these may be persuasive as diagnostic criteria for the upward arrest of the diagenetic transformation at a regional scale, but actual truncation of the TZA/CT at the modern seabed is definitive for arrested diagenesis. This study argues that diagenetic assessment based solely on a single criterion independently is not reliable as an indicator for the current state of a silica transition. As a conclusion, the analysed seismic/structural criteria should be synthesised to provide a more credible interpretation for silica diagenesis. The use of modern 2D and 3D seismic data for the reconstruction of the diagenetic history of opaline silica bearing sediments offers a new approach to the study of silica diagenesis at a regional scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.