ObjectivesThe incidence of type 2 diabetes mellitus has increased significantly in recent years. With the development of artificial intelligence applications in healthcare, they are used for diagnosis, therapeutic decision making, and outcome prediction, especially in type 2 diabetes mellitus. This study aimed to identify the artificial intelligence (AI) applications for type 2 diabetes mellitus care.MethodsThis is a review conducted in 2018. We searched the PubMed, Web of Science, and Embase scientific databases, based on a combination of related mesh terms. The article selection process was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Finally, 31 articles were selected after inclusion and exclusion criteria were applied. Data gathering was done by using a data extraction form. Data were summarized and reported based on the study objectives.ResultsThe main applications of AI for type 2 diabetes mellitus care were screening and diagnosis in different stages. Among all of the reviewed AI methods, machine learning methods with 71% (n = 22) were the most commonly applied techniques. Many applications were in multi method forms (23%). Among the machine learning algorithms applications, support vector machine (21%) and naive Bayesian (19%) were the most commonly used methods. The most important variables that were used in the selected studies were body mass index, fasting blood sugar, blood pressure, HbA1c, triglycerides, low-density lipoprotein, high-density lipoprotein, and demographic variables.ConclusionsIt is recommended to select optimal algorithms by testing various techniques. Support vector machine and naive Bayesian might achieve better performance than other applications due to the type of variables and targets in diabetes-related outcomes classification.
Objectives: Despite the growing use of mobile health (mHealth), certain barriers seem to be hindering the use of mHealth applications in healthcare. This article presents a systematic review of the literature on barriers associated with mHealth reported by healthcare professionals.Methods: This systematic review was carried out to identify studies published from January 2015 to December 2019 by searching four electronic databases (PubMed/MEDLINE, Web of Science, Embase, and Google Scholar). Studies were included if they reported perceived barriers to the adoption of mHealth from healthcare providers’ perspectives. Content analysis and categorization of barriers were performed based on a focus group discussion that explored researchers’ knowledge and experiences.Results: Among the 273 papers retrieved through the search strategy, 18 works were selected and 18 barriers were identified. The relevant barriers were categorized into three main groups: technical, individual, and healthcare system. Security and privacy concerns from the category of technical barriers, knowledge and limited literacy from the category of individual barriers, and economic and financial factors from the category of healthcare system barriers were chosen as three of the most important challenges related to the adoption of mHealth described in the included publications.Conclusions: mHealth adoption is a complex and multi-dimensional process that is widely implemented to increase access to healthcare services. However, it is influenced by various factors and barriers. Understanding the barriers to adoption of mHealth applications among providers, and engaging them in the adoption process will be important for the successful deployment of these applications.
Context: The implementation and operation activities related to electronic health records (EHRs) have increased in different countries, and their importance is clear. However, the deployment of an EHR system depends on many factors that must be considered during implementation. The goal of this study was to identify and classify the challenges related to EHR deployment.Evidence Acquisition: The present study involved a literature review that was carried out through a search on the ISI, PubMed, DOAJ, Scopus, Science Direct, and Google Scholar databases, as well as the Google and Yahoo search engines, using the relevant MeSH keywords and focusing on the period of 2005 -2015. The data were collected in an Excel file and analyzed based on the study objectives.Results: From the investigation of related articles, we found that the deployment of EHRs faces many challenges that can be classified into six main categories. These are economic, behavioral, human, technical, legal, and organizational challenges.
Conclusions:With regard to the obtained results, it is recommended that the authorities put effort into resolving the economic, behavioral, human, technical, legal, and organizational challenges related to the implementation and deployment of EHRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.