Pressure fluctuations beneath hydraulic jumps potentially endanger the stability of stilling basins. This paper deals with the mathematical modeling of the results of laboratory-scale experiments to estimate the extreme pressures. Experiments were carried out on a smooth stilling basin underneath free hydraulic jumps downstream of an Ogee spillway. From the probability distribution of measured instantaneous pressures, pressures with different probabilities could be determined. It was verified that maximum pressure fluctuations, and the negative pressures, are located at the positions near the spillway toe. Also, minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was possible to assess the cumulative curves of pressure data related to the characteristic points along the basin, and different Froude numbers. To benchmark the results, the dimensionless forms of statistical parameters include mean pressures (P*m), the standard deviations of pressure fluctuations (σ*X), pressures with different non-exceedance probabilities (P*k%), and the statistical coefficient of the probability distribution (Nk%) were assessed. It was found that an existing method can be used to interpret the present data, and pressure distribution in similar conditions, by using a new second-order fractional relationships for σ*X, and Nk%. The values of the Nk% coefficient indicated a single mean value for each probability.
Electricity demand prediction is vital for energy production management and proper exploitation of the present resources. Recently, several novel machine learning (ML) models have been employed for electricity demand prediction to estimate the future prospects of the energy requirements. The main objective of this study is to review the various ML models applied for electricity demand prediction. Through a novel search and taxonomy, the most relevant original research articles in the field are identified and further classified according to the ML modeling technique, perdition type, and the application area. A comprehensive review of the literature identifies the major ML models, their applications and a discussion on the evaluation of their performance. This paper further makes a discussion on the trend and the performance of the ML models. As the result, this research reports an outstanding rise in the accuracy, robustness, precision and the generalization ability of the prediction models using the hybrid and ensemble ML algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.