The purpose of this work is to evaluate and quantify the potential radiobiological advantages of tumor tracking using the MR-linac for three disease sites: liver, pancreas and kidney.From each disease site, three patients were selected and 4DCT data sets were used. We applied two planning methods using the Monaco treatment planning system (Elekta AB,Stockholm,Sweden): (1) the conventional ITV method using a 6MV Agility beam and (2) a simulated tracking method using MLC GTV tracking with a 7MV MR-linac beam model incorporating a 1.5 T transverse magnetic field. A 5 mm isotropic PTV margin was added to the ITV or the GTV, and 95% of the PTV volume received 100% of the prescription dose. To evaluate the potential radiobiological advantages of tumor tracking, the normal tissue complication probabilities (NTCPs) were calculated for each organ at risk (OAR) using the Layman Kutcher Burman (LKB) model.The average reduction in the target volume, due to tracking, was 31.1%, 26.3% and 26.9% for liver, pancreas and kidney patients, respectively. For each OAR, the % differences in NTCP between the two methods were calculated. The mean 2 Gy equivalent OAR dose for all patients was less than 29.1 Gy, below which the NTCP for most OARs was not sensitive to equivalent uniform dose (EUD). As a result, a NTCP benefit, due to tracking, was observed in 26% of the data. For all three disease sites, the maximum NTCP improvements were for the normal kidney, the bowels, and the duodenum, with reductions in associated toxicities of 79% (radiation nephropathy), 69% (stricture/ fistula) and 25% (ulceration), respectively.This study demonstrates the potential benefit of using a MR-linac tracking system to reduce NTCPs. The normal kidney, the bowels and the duodenum showed the largest NTCP improvements. This, in part, is due to the rapid changes in NTCP for small EUD changes.
PurposeTargeting and tracking of central lung tumors may be feasible on the Elekta MRI‐linac (MRL) due to the soft‐tissue visualization capabilities of MRI. The purpose of this work is to develop a novel treatment planning methodology to simulate tracking of central lung tumors with the MRL and to quantify the benefits in OAR sparing compared with the ITV approach.MethodsFull 4D‐CT datasets for five central lung cancer patients were selected to simulate the condition of having 4D‐pseudo‐CTs derived from 4D‐MRI data available on the MRL with real‐time tracking capabilities. We used the MRL treatment planning system to generate two plans: (a) with a set of MLC‐defined apertures around the target at each phase of the breathing (“4D‐MRL” method); (b) with a fixed set of fields encompassing the maximum inhale and exhale of the breathing cycle (“ITV” method). For both plans, dose accumulation was performed onto a reference phase. To further study the potential benefits of a 4D‐MRL method, the results were stratified by tumor motion amplitude, OAR‐to‐tumor proximity, and the relative OAR motion (ROM).ResultsWith the 4D‐MRL method, the reduction in mean doses was up to 3.0 Gy and 1.9 Gy for the heart and the lung. Moreover, the lung's V12.5 Gy was spared by a maximum of 300 cc. Maximum doses to serial organs were reduced by up to 6.1 Gy, 1.5 Gy, and 9.0 Gy for the esophagus, spinal cord, and the trachea, respectively. OAR dose reduction with our method depended on the tumor motion amplitude and the ROM. Some OARs with large ROMs and in close proximity to the tumor benefited from tracking despite small tumor amplitudes.ConclusionsWe developed a novel 4D tracking methodology for the MRL for central lung tumors and quantified the potential dosimetric benefits compared with our current ITV approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.