This paper presents the prediction of the fatigue life of aluminum Al 2024-T351 at room and elevated temperatures under uniaxial loading using finite element simulation. Structural parts such as fuselage, wings, aircraft turbines and heat exchangers are required to work safely at this working condition even with decreasing fatigue strength and other properties. The monotonic tensile and cyclic tests at 100 °C and 200 °C were conducted using MTS 810 servo hydraulic equipped with MTS 653 high temperature furnace at a frequency of 10 Hz and load ratio of 0.1. There was an 8% increase in the yield strength and a 2.32 MPa difference in the ultimate strength at 100 °C. However, the yield strength had a 1.61 MPa difference and 25% decrease in the ultimate strength at 200 °C compared to the room temperature. The mechanical and micro-structural behavior at elevated temperatures caused an increase in the crack initiation and crack propagation which reduced the total fatigue life. The yield strength, ultimate strength, alternating stress, mean stress and fatigue life were taken as the input in finite element commercial software, ANSYS. Comparison of results between experimental and finite element methods showed a good agreement. Hence, the suggested method using the numerical software can be used for predicting the fatigue life at elevated temperature.
The change in material properties at low temperature has always been one of the concerned design factors in aircraft industries. The wings and fuselage are repeatedly exposed to sub zero temperature during cruising at high altitude. In this study, fatigue tests were conducted on standard flat specimens of aluminum 2024-T3 at room temperature and at -30 °C. The monotonic and cyclic loading tests were conducted using MTS 810 servo hydraulic machine equipped with a cooling chamber. The monotonic tests were conducted at a crosshead speed rate of 1 mm/min and the cyclic tests at a frequency of 10 Hz with a load ratio of 0.1. The experimental data obtained, such as the yield strength, ultimate strength and S-N curve were used as the input parameters in ANSYS Workbench 16.1. This close agreement demonstrates that the isotropic model in ANSYS workbench is essential in predicting fatigue life. The increase in stress parameter causes fatigue life to decrease. Besides, the decrease in temperature causes the total fatigue life to increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.